Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(-tan^2(x))/2 =cos^2(x)-1

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2−tan2(x)​=cos2(x)−1

Solution

x=2πn,x=π+2πn,x=43π​+2πn,x=45π​+2πn,x=4π​+2πn,x=47π​+2πn
+1
Degrees
x=0∘+360∘n,x=180∘+360∘n,x=135∘+360∘n,x=225∘+360∘n,x=45∘+360∘n,x=315∘+360∘n
Solution steps
2−tan2(x)​=cos2(x)−1
Subtract cos2(x)−1 from both sides−2tan2(x)​−cos2(x)+1=0
Simplify −2tan2(x)​−cos2(x)+1:2−tan2(x)−2cos2(x)+2​
−2tan2(x)​−cos2(x)+1
Convert element to fraction: cos2(x)=2cos2(x)2​,1=21⋅2​=−2tan2(x)​−2cos2(x)⋅2​+21⋅2​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2−tan2(x)−cos2(x)⋅2+1⋅2​
Multiply the numbers: 1⋅2=2=2−tan2(x)−2cos2(x)+2​
2−tan2(x)−2cos2(x)+2​=0
g(x)f(x)​=0⇒f(x)=0−tan2(x)−2cos2(x)+2=0
Rewrite using trig identities
2−tan2(x)−2cos2(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=2−tan2(x)−2(1−sin2(x))
Simplify 2−tan2(x)−2(1−sin2(x)):2sin2(x)−tan2(x)
2−tan2(x)−2(1−sin2(x))
Expand −2(1−sin2(x)):−2+2sin2(x)
−2(1−sin2(x))
Apply the distributive law: a(b−c)=ab−aca=−2,b=1,c=sin2(x)=−2⋅1−(−2)sin2(x)
Apply minus-plus rules−(−a)=a=−2⋅1+2sin2(x)
Multiply the numbers: 2⋅1=2=−2+2sin2(x)
=2−tan2(x)−2+2sin2(x)
Simplify 2−tan2(x)−2+2sin2(x):2sin2(x)−tan2(x)
2−tan2(x)−2+2sin2(x)
Group like terms=−tan2(x)+2sin2(x)+2−2
2−2=0=2sin2(x)−tan2(x)
=2sin2(x)−tan2(x)
=2sin2(x)−tan2(x)
−tan2(x)+2sin2(x)=0
Factor −tan2(x)+2sin2(x):(2​sin(x)+tan(x))(2​sin(x)−tan(x))
−tan2(x)+2sin2(x)
Rewrite 2sin2(x)−tan2(x) as (2​sin(x))2−tan2(x)
2sin2(x)−tan2(x)
Apply radical rule: a=(a​)22=(2​)2=(2​)2sin2(x)−tan2(x)
Apply exponent rule: ambm=(ab)m(2​)2sin2(x)=(2​sin(x))2=(2​sin(x))2−tan2(x)
=(2​sin(x))2−tan2(x)
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(2​sin(x))2−tan2(x)=(2​sin(x)+tan(x))(2​sin(x)−tan(x))=(2​sin(x)+tan(x))(2​sin(x)−tan(x))
(2​sin(x)+tan(x))(2​sin(x)−tan(x))=0
Solving each part separately2​sin(x)+tan(x)=0or2​sin(x)−tan(x)=0
2​sin(x)+tan(x)=0:x=2πn,x=π+2πn,x=43π​+2πn,x=45π​+2πn
2​sin(x)+tan(x)=0
Express with sin, cos
tan(x)+sin(x)2​
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=cos(x)sin(x)​+sin(x)2​
Simplify cos(x)sin(x)​+sin(x)2​:cos(x)sin(x)+2​sin(x)cos(x)​
cos(x)sin(x)​+sin(x)2​
Convert element to fraction: 2​sin(x)=cos(x)sin(x)2​cos(x)​=cos(x)sin(x)​+cos(x)sin(x)2​cos(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(x)sin(x)+sin(x)2​cos(x)​
=cos(x)sin(x)+2​sin(x)cos(x)​
cos(x)sin(x)+cos(x)sin(x)2​​=0
g(x)f(x)​=0⇒f(x)=0sin(x)+cos(x)sin(x)2​=0
Factor sin(x)+cos(x)sin(x)2​:sin(x)(1+2​cos(x))
sin(x)+cos(x)sin(x)2​
Factor out common term sin(x)=sin(x)(1+cos(x)2​)
sin(x)(1+2​cos(x))=0
Solving each part separatelysin(x)=0or1+2​cos(x)=0
sin(x)=0:x=2πn,x=π+2πn
sin(x)=0
General solutions for sin(x)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=0+2πn,x=π+2πn
x=0+2πn,x=π+2πn
Solve x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn,x=π+2πn
1+2​cos(x)=0:x=43π​+2πn,x=45π​+2πn
1+2​cos(x)=0
Move 1to the right side
1+2​cos(x)=0
Subtract 1 from both sides1+2​cos(x)−1=0−1
Simplify2​cos(x)=−1
2​cos(x)=−1
Divide both sides by 2​
2​cos(x)=−1
Divide both sides by 2​2​2​cos(x)​=2​−1​
Simplify
2​2​cos(x)​=2​−1​
Simplify 2​2​cos(x)​:cos(x)
2​2​cos(x)​
Cancel the common factor: 2​=cos(x)
Simplify 2​−1​:−22​​
2​−1​
Apply the fraction rule: b−a​=−ba​=−2​1​
Rationalize −2​1​:−22​​
−2​1​
Multiply by the conjugate 2​2​​=−2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=−22​​
=−22​​
cos(x)=−22​​
cos(x)=−22​​
cos(x)=−22​​
General solutions for cos(x)=−22​​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=43π​+2πn,x=45π​+2πn
x=43π​+2πn,x=45π​+2πn
Combine all the solutionsx=2πn,x=π+2πn,x=43π​+2πn,x=45π​+2πn
2​sin(x)−tan(x)=0:x=2πn,x=π+2πn,x=4π​+2πn,x=47π​+2πn
2​sin(x)−tan(x)=0
Express with sin, cos
−tan(x)+sin(x)2​
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=−cos(x)sin(x)​+sin(x)2​
Simplify −cos(x)sin(x)​+sin(x)2​:cos(x)−sin(x)+2​sin(x)cos(x)​
−cos(x)sin(x)​+sin(x)2​
Convert element to fraction: 2​sin(x)=cos(x)sin(x)2​cos(x)​=−cos(x)sin(x)​+cos(x)sin(x)2​cos(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(x)−sin(x)+sin(x)2​cos(x)​
=cos(x)−sin(x)+2​sin(x)cos(x)​
cos(x)−sin(x)+cos(x)sin(x)2​​=0
g(x)f(x)​=0⇒f(x)=0−sin(x)+cos(x)sin(x)2​=0
Factor −sin(x)+cos(x)sin(x)2​:sin(x)(−1+2​cos(x))
−sin(x)+cos(x)sin(x)2​
Factor out common term sin(x)=sin(x)(−1+cos(x)2​)
sin(x)(−1+2​cos(x))=0
Solving each part separatelysin(x)=0or−1+2​cos(x)=0
sin(x)=0:x=2πn,x=π+2πn
sin(x)=0
General solutions for sin(x)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=0+2πn,x=π+2πn
x=0+2πn,x=π+2πn
Solve x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn,x=π+2πn
−1+2​cos(x)=0:x=4π​+2πn,x=47π​+2πn
−1+2​cos(x)=0
Move 1to the right side
−1+2​cos(x)=0
Add 1 to both sides−1+2​cos(x)+1=0+1
Simplify2​cos(x)=1
2​cos(x)=1
Divide both sides by 2​
2​cos(x)=1
Divide both sides by 2​2​2​cos(x)​=2​1​
Simplify
2​2​cos(x)​=2​1​
Simplify 2​2​cos(x)​:cos(x)
2​2​cos(x)​
Cancel the common factor: 2​=cos(x)
Simplify 2​1​:22​​
2​1​
Multiply by the conjugate 2​2​​=2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=22​​
cos(x)=22​​
cos(x)=22​​
cos(x)=22​​
General solutions for cos(x)=22​​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=4π​+2πn,x=47π​+2πn
x=4π​+2πn,x=47π​+2πn
Combine all the solutionsx=2πn,x=π+2πn,x=4π​+2πn,x=47π​+2πn
Combine all the solutionsx=2πn,x=π+2πn,x=43π​+2πn,x=45π​+2πn,x=4π​+2πn,x=47π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(a)= pi/4sin(a)=4π​sin(x-pi/2)=0sin(x−2π​)=0tan(x)= 12/15tan(x)=1512​cos(6x)-cos(2x)=0cos(6x)−cos(2x)=0(2cos(x)-1)(cos(x)+1)=0(2cos(x)−1)(cos(x)+1)=0
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024