Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos(θ)=sin(θ/3-10)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos(θ)=sin(3θ​−10∘)

Solution

θ=123240∘n+900∘​,θ=−6900∘+3240∘n​
+1
Radians
θ=125π​+1218π​n,θ=−65π​−618π​n
Solution steps
cos(θ)=sin(3θ​−10∘)
Rewrite using trig identities
cos(θ)=sin(3θ​−10∘)
Use the following identity: cos(x)=sin(90∘−x)cos(θ)=sin(90∘−θ)
cos(θ)=sin(90∘−θ)
Apply trig inverse properties
cos(θ)=sin(90∘−θ)
sin(x)=sin(y)⇒x=y+2πn,x=π−y+2πn3θ​−10∘=90∘−θ+360∘n,3θ​−10∘=180∘−(90∘−θ)+360∘n
3θ​−10∘=90∘−θ+360∘n,3θ​−10∘=180∘−(90∘−θ)+360∘n
3θ​−10∘=90∘−θ+360∘n:θ=123240∘n+900∘​
3θ​−10∘=90∘−θ+360∘n
Move 10∘to the right side
3θ​−10∘=90∘−θ+360∘n
Add 10∘ to both sides3θ​−10∘+10∘=90∘−θ+360∘n+10∘
Simplify
3θ​−10∘+10∘=90∘−θ+360∘n+10∘
Simplify 3θ​−10∘+10∘:3θ​
3θ​−10∘+10∘
Add similar elements: −10∘+10∘=0
=3θ​
Simplify 90∘−θ+360∘n+10∘:−θ+360∘n+100∘
90∘−θ+360∘n+10∘
Group like terms=−θ+360∘n+90∘+10∘
Least Common Multiplier of 2,18:18
2,18
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 18:2⋅3⋅3
18
18divides by 218=9⋅2=2⋅9
9divides by 39=3⋅3=2⋅3⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3⋅3
Multiply each factor the greatest number of times it occurs in either 2 or 18=2⋅3⋅3
Multiply the numbers: 2⋅3⋅3=18=18
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 18
For 90∘:multiply the denominator and numerator by 990∘=2⋅9180∘9​=90∘
=90∘+10∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=18180∘9+180∘​
Add similar elements: 1620∘+180∘=1800∘=100∘
Cancel the common factor: 2=−θ+360∘n+100∘
3θ​=−θ+360∘n+100∘
3θ​=−θ+360∘n+100∘
3θ​=−θ+360∘n+100∘
Multiply both sides by 3
3θ​=−θ+360∘n+100∘
Multiply both sides by 33θ​⋅3=−θ⋅3+360∘n⋅3+100∘⋅3
Simplify
3θ​⋅3=−θ⋅3+360∘n⋅3+100∘⋅3
Simplify 3θ​⋅3:θ
3θ​⋅3
Multiply fractions: a⋅cb​=ca⋅b​=3θ⋅3​
Cancel the common factor: 3=θ
Simplify θ⋅3:3θ
θ⋅3
Apply the commutative law: θ⋅3=3θ3θ
Simplify 360∘n⋅3:1080∘n
360∘n⋅3
Multiply the numbers: 2⋅3=6=1080∘n
Simplify 100∘⋅3:300∘
100∘⋅3
Multiply fractions: a⋅cb​=ca⋅b​=300∘
Multiply the numbers: 5⋅3=15=300∘
Cancel the common factor: 3=300∘
θ=−3θ+1080∘n+300∘
θ=−3θ+1080∘n+300∘
θ=−3θ+1080∘n+300∘
Move 3θto the left side
θ=−3θ+1080∘n+300∘
Add 3θ to both sidesθ+3θ=−3θ+1080∘n+300∘+3θ
Simplify4θ=1080∘n+300∘
4θ=1080∘n+300∘
Divide both sides by 4
4θ=1080∘n+300∘
Divide both sides by 444θ​=41080∘n​+4300∘​
Simplify
44θ​=41080∘n​+4300∘​
Simplify 44θ​:θ
44θ​
Divide the numbers: 44​=1=θ
Simplify 41080∘n​+4300∘​:123240∘n+900∘​
41080∘n​+4300∘​
Apply rule ca​±cb​=ca±b​=41080∘n+300∘​
Join 1080∘n+300∘:33240∘n+900∘​
1080∘n+300∘
Convert element to fraction: 1080∘n=31080∘n3​=31080∘n⋅3​+300∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=31080∘n⋅3+900∘​
Multiply the numbers: 6⋅3=18=33240∘n+900∘​
=433240∘n+900∘​​
Apply the fraction rule: acb​​=c⋅ab​=3⋅43240∘n+900∘​
Multiply the numbers: 3⋅4=12=123240∘n+900∘​
θ=123240∘n+900∘​
θ=123240∘n+900∘​
θ=123240∘n+900∘​
3θ​−10∘=180∘−(90∘−θ)+360∘n:θ=−6900∘+3240∘n​
3θ​−10∘=180∘−(90∘−θ)+360∘n
Move 10∘to the right side
3θ​−10∘=180∘−(90∘−θ)+360∘n
Add 10∘ to both sides3θ​−10∘+10∘=180∘−(90∘−θ)+360∘n+10∘
Simplify
3θ​−10∘+10∘=180∘−(90∘−θ)+360∘n+10∘
Simplify 3θ​−10∘+10∘:3θ​
3θ​−10∘+10∘
Add similar elements: −10∘+10∘=0
=3θ​
Simplify 180∘−(90∘−θ)+360∘n+10∘:θ+180∘+360∘n−80∘
180∘−(90∘−θ)+360∘n+10∘
−(90∘−θ):−90∘+θ
−(90∘−θ)
Distribute parentheses=−(90∘)−(−θ)
Apply minus-plus rules−(−a)=a,−(a)=−a=−90∘+θ
=180∘−90∘+θ+360∘n+10∘
Simplify 180∘−90∘+θ+360∘n+10∘:θ+180∘+360∘n−80∘
180∘−90∘+θ+360∘n+10∘
Group like terms=θ+180∘+360∘n−90∘+10∘
Least Common Multiplier of 2,18:18
2,18
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 18:2⋅3⋅3
18
18divides by 218=9⋅2=2⋅9
9divides by 39=3⋅3=2⋅3⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3⋅3
Multiply each factor the greatest number of times it occurs in either 2 or 18=2⋅3⋅3
Multiply the numbers: 2⋅3⋅3=18=18
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 18
For 90∘:multiply the denominator and numerator by 990∘=2⋅9180∘9​=90∘
=−90∘+10∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=18−180∘9+180∘​
Add similar elements: −1620∘+180∘=−1440∘=18−1440∘​
Apply the fraction rule: b−a​=−ba​=−80∘
Cancel the common factor: 2=θ+180∘+360∘n−80∘
=θ+180∘+360∘n−80∘
3θ​=θ+180∘+360∘n−80∘
3θ​=θ+180∘+360∘n−80∘
3θ​=θ+180∘+360∘n−80∘
Multiply both sides by 3
3θ​=θ+180∘+360∘n−80∘
Multiply both sides by 33θ​⋅3=θ⋅3+180∘3+360∘n⋅3−80∘⋅3
Simplify
3θ​⋅3=θ⋅3+180∘3+360∘n⋅3−80∘⋅3
Simplify 3θ​⋅3:θ
3θ​⋅3
Multiply fractions: a⋅cb​=ca⋅b​=3θ⋅3​
Cancel the common factor: 3=θ
Simplify θ⋅3:3θ
θ⋅3
Apply the commutative law: θ⋅3=3θ3θ
Simplify 180∘3:540∘
180∘3
Apply the commutative law: 180∘3=540∘540∘
Simplify 360∘n⋅3:1080∘n
360∘n⋅3
Multiply the numbers: 2⋅3=6=1080∘n
Simplify −80∘⋅3:−240∘
−80∘⋅3
Multiply fractions: a⋅cb​=ca⋅b​=−240∘
Multiply the numbers: 4⋅3=12=−240∘
Cancel the common factor: 3=−240∘
θ=3θ+540∘+1080∘n−240∘
θ=3θ+540∘+1080∘n−240∘
θ=3θ+540∘+1080∘n−240∘
Move 3θto the left side
θ=3θ+540∘+1080∘n−240∘
Subtract 3θ from both sidesθ−3θ=3θ+540∘+1080∘n−240∘−3θ
Simplify−2θ=540∘+1080∘n−240∘
−2θ=540∘+1080∘n−240∘
Divide both sides by −2
−2θ=540∘+1080∘n−240∘
Divide both sides by −2−2−2θ​=−2540∘​+−21080∘n​−−2240∘​
Simplify
−2−2θ​=−2540∘​+−21080∘n​−−2240∘​
Simplify −2−2θ​:θ
−2−2θ​
Apply the fraction rule: −b−a​=ba​=22θ​
Divide the numbers: 22​=1=θ
Simplify −2540∘​+−21080∘n​−−2240∘​:−6900∘+3240∘n​
−2540∘​+−21080∘n​−−2240∘​
Apply rule ca​±cb​=ca±b​=−2540∘+1080∘n−240∘​
Apply the fraction rule: −ba​=−ba​=−2540∘+1080∘n−240∘​
Join 540∘+1080∘n−240∘:3900∘+3240∘n​
540∘+1080∘n−240∘
Convert element to fraction: 540∘=540∘,1080∘n=31080∘n3​=540∘+31080∘n⋅3​−240∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=3540∘3+1080∘n⋅3−720∘​
540∘3+1080∘n⋅3−720∘=900∘+3240∘n
540∘3+1080∘n⋅3−720∘
Multiply the numbers: 3⋅3=9=1620∘+6⋅540∘n−720∘
Multiply the numbers: 6⋅3=18=1620∘+3240∘n−720∘
Group like terms=1620∘−720∘+3240∘n
Add similar elements: 1620∘−720∘=900∘=900∘+3240∘n
=3900∘+3240∘n​
=−23900∘+3240∘n​​
Simplify 23900∘+3240∘n​​:6900∘+3240∘n​
23900∘+3240∘n​​
Apply the fraction rule: acb​​=c⋅ab​=3⋅2900∘+3240∘n​
Multiply the numbers: 3⋅2=6=6900∘+3240∘n​
=−6900∘+3240∘n​
θ=−6900∘+3240∘n​
θ=−6900∘+3240∘n​
θ=−6900∘+3240∘n​
θ=123240∘n+900∘​,θ=−6900∘+3240∘n​
θ=123240∘n+900∘​,θ=−6900∘+3240∘n​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

tan(x)=sec(x)tan(x)=sec(x)tan(θ)= 8/6tan(θ)=68​2cos(x)tan(x)+tan(x)=1+2cos(x)2cos(x)tan(x)+tan(x)=1+2cos(x)tan(45-x)+tan(x)=1tan(45∘−x)+tan(x)=1tan(3B+5)=cot(2B+10)tan(3B+5∘)=cot(2B+10∘)

Frequently Asked Questions (FAQ)

  • What is the general solution for cos(θ)=sin(θ/3-10) ?

    The general solution for cos(θ)=sin(θ/3-10) is θ=(3240n+900}{12},θ=-\frac{900+3240n)/6
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024