Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

8sin(x)=cos(x)-6

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

8sin(x)=cos(x)−6

Solution

x=−2.17788…+2πn,x=2π−0.71499…+2πn
+1
Degrees
x=−124.78383…∘+360∘n,x=319.03386…∘+360∘n
Solution steps
8sin(x)=cos(x)−6
Square both sides(8sin(x))2=(cos(x)−6)2
Subtract (cos(x)−6)2 from both sides64sin2(x)−cos2(x)+12cos(x)−36=0
Rewrite using trig identities
−36−cos2(x)+12cos(x)+64sin2(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=−36−cos2(x)+12cos(x)+64(1−cos2(x))
Simplify −36−cos2(x)+12cos(x)+64(1−cos2(x)):12cos(x)−65cos2(x)+28
−36−cos2(x)+12cos(x)+64(1−cos2(x))
Expand 64(1−cos2(x)):64−64cos2(x)
64(1−cos2(x))
Apply the distributive law: a(b−c)=ab−aca=64,b=1,c=cos2(x)=64⋅1−64cos2(x)
Multiply the numbers: 64⋅1=64=64−64cos2(x)
=−36−cos2(x)+12cos(x)+64−64cos2(x)
Simplify −36−cos2(x)+12cos(x)+64−64cos2(x):12cos(x)−65cos2(x)+28
−36−cos2(x)+12cos(x)+64−64cos2(x)
Group like terms=−cos2(x)+12cos(x)−64cos2(x)−36+64
Add similar elements: −cos2(x)−64cos2(x)=−65cos2(x)=−65cos2(x)+12cos(x)−36+64
Add/Subtract the numbers: −36+64=28=12cos(x)−65cos2(x)+28
=12cos(x)−65cos2(x)+28
=12cos(x)−65cos2(x)+28
28+12cos(x)−65cos2(x)=0
Solve by substitution
28+12cos(x)−65cos2(x)=0
Let: cos(x)=u28+12u−65u2=0
28+12u−65u2=0:u=−652(429​−3)​,u=652(3+429​)​
28+12u−65u2=0
Write in the standard form ax2+bx+c=0−65u2+12u+28=0
Solve with the quadratic formula
−65u2+12u+28=0
Quadratic Equation Formula:
For a=−65,b=12,c=28u1,2​=2(−65)−12±122−4(−65)⋅28​​
u1,2​=2(−65)−12±122−4(−65)⋅28​​
122−4(−65)⋅28​=1629​
122−4(−65)⋅28​
Apply rule −(−a)=a=122+4⋅65⋅28​
Multiply the numbers: 4⋅65⋅28=7280=122+7280​
122=144=144+7280​
Add the numbers: 144+7280=7424=7424​
Prime factorization of 7424:28⋅29
7424
7424divides by 27424=3712⋅2=2⋅3712
3712divides by 23712=1856⋅2=2⋅2⋅1856
1856divides by 21856=928⋅2=2⋅2⋅2⋅928
928divides by 2928=464⋅2=2⋅2⋅2⋅2⋅464
464divides by 2464=232⋅2=2⋅2⋅2⋅2⋅2⋅232
232divides by 2232=116⋅2=2⋅2⋅2⋅2⋅2⋅2⋅116
116divides by 2116=58⋅2=2⋅2⋅2⋅2⋅2⋅2⋅2⋅58
58divides by 258=29⋅2=2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅29
2,29 are all prime numbers, therefore no further factorization is possible=2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅29
=28⋅29
=28⋅29​
Apply radical rule: nab​=na​nb​=29​28​
Apply radical rule: nam​=anm​28​=228​=24=2429​
Refine=1629​
u1,2​=2(−65)−12±1629​​
Separate the solutionsu1​=2(−65)−12+1629​​,u2​=2(−65)−12−1629​​
u=2(−65)−12+1629​​:−652(429​−3)​
2(−65)−12+1629​​
Remove parentheses: (−a)=−a=−2⋅65−12+1629​​
Multiply the numbers: 2⋅65=130=−130−12+1629​​
Apply the fraction rule: −ba​=−ba​=−130−12+1629​​
Cancel 130−12+1629​​:652(429​−3)​
130−12+1629​​
Factor −12+1629​:4(−3+429​)
−12+1629​
Rewrite as=−4⋅3+4⋅429​
Factor out common term 4=4(−3+429​)
=1304(−3+429​)​
Cancel the common factor: 2=652(429​−3)​
=−652(429​−3)​
u=2(−65)−12−1629​​:652(3+429​)​
2(−65)−12−1629​​
Remove parentheses: (−a)=−a=−2⋅65−12−1629​​
Multiply the numbers: 2⋅65=130=−130−12−1629​​
Apply the fraction rule: −b−a​=ba​−12−1629​=−(12+1629​)=13012+1629​​
Factor 12+1629​:4(3+429​)
12+1629​
Rewrite as=4⋅3+4⋅429​
Factor out common term 4=4(3+429​)
=1304(3+429​)​
Cancel the common factor: 2=652(3+429​)​
The solutions to the quadratic equation are:u=−652(429​−3)​,u=652(3+429​)​
Substitute back u=cos(x)cos(x)=−652(429​−3)​,cos(x)=652(3+429​)​
cos(x)=−652(429​−3)​,cos(x)=652(3+429​)​
cos(x)=−652(429​−3)​:x=arccos(−652(429​−3)​)+2πn,x=−arccos(−652(429​−3)​)+2πn
cos(x)=−652(429​−3)​
Apply trig inverse properties
cos(x)=−652(429​−3)​
General solutions for cos(x)=−652(429​−3)​cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnx=arccos(−652(429​−3)​)+2πn,x=−arccos(−652(429​−3)​)+2πn
x=arccos(−652(429​−3)​)+2πn,x=−arccos(−652(429​−3)​)+2πn
cos(x)=652(3+429​)​:x=arccos(652(3+429​)​)+2πn,x=2π−arccos(652(3+429​)​)+2πn
cos(x)=652(3+429​)​
Apply trig inverse properties
cos(x)=652(3+429​)​
General solutions for cos(x)=652(3+429​)​cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnx=arccos(652(3+429​)​)+2πn,x=2π−arccos(652(3+429​)​)+2πn
x=arccos(652(3+429​)​)+2πn,x=2π−arccos(652(3+429​)​)+2πn
Combine all the solutionsx=arccos(−652(429​−3)​)+2πn,x=−arccos(−652(429​−3)​)+2πn,x=arccos(652(3+429​)​)+2πn,x=2π−arccos(652(3+429​)​)+2πn
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into 8sin(x)=cos(x)−6
Remove the ones that don't agree with the equation.
Check the solution arccos(−652(429​−3)​)+2πn:False
arccos(−652(429​−3)​)+2πn
Plug in n=1arccos(−652(429​−3)​)+2π1
For 8sin(x)=cos(x)−6plug inx=arccos(−652(429​−3)​)+2π18sin(arccos(−652(429​−3)​)+2π1)=cos(arccos(−652(429​−3)​)+2π1)−6
Refine6.57048…=−6.57048…
⇒False
Check the solution −arccos(−652(429​−3)​)+2πn:True
−arccos(−652(429​−3)​)+2πn
Plug in n=1−arccos(−652(429​−3)​)+2π1
For 8sin(x)=cos(x)−6plug inx=−arccos(−652(429​−3)​)+2π18sin(−arccos(−652(429​−3)​)+2π1)=cos(−arccos(−652(429​−3)​)+2π1)−6
Refine−6.57048…=−6.57048…
⇒True
Check the solution arccos(652(3+429​)​)+2πn:False
arccos(652(3+429​)​)+2πn
Plug in n=1arccos(652(3+429​)​)+2π1
For 8sin(x)=cos(x)−6plug inx=arccos(652(3+429​)​)+2π18sin(arccos(652(3+429​)​)+2π1)=cos(arccos(652(3+429​)​)+2π1)−6
Refine5.24490…=−5.24490…
⇒False
Check the solution 2π−arccos(652(3+429​)​)+2πn:True
2π−arccos(652(3+429​)​)+2πn
Plug in n=12π−arccos(652(3+429​)​)+2π1
For 8sin(x)=cos(x)−6plug inx=2π−arccos(652(3+429​)​)+2π18sin(2π−arccos(652(3+429​)​)+2π1)=cos(2π−arccos(652(3+429​)​)+2π1)−6
Refine−5.24490…=−5.24490…
⇒True
x=−arccos(−652(429​−3)​)+2πn,x=2π−arccos(652(3+429​)​)+2πn
Show solutions in decimal formx=−2.17788…+2πn,x=2π−0.71499…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

27sin(t)cos(t)=-3sin(t)27sin(t)cos(t)=−3sin(t)sin(5x)-sin(x)+3cos(3x)=0sin(5x)−sin(x)+3cos(3x)=02+2sin(θ)=cos^2(θ)2+2sin(θ)=cos2(θ)2cos(x)cos(2x)-2sin(x)sin(2x)=-12cos(x)cos(2x)−2sin(x)sin(2x)=−1-19sin(θ)+19/2 =0−19sin(θ)+219​=0

Frequently Asked Questions (FAQ)

  • What is the general solution for 8sin(x)=cos(x)-6 ?

    The general solution for 8sin(x)=cos(x)-6 is x=-2.17788…+2pin,x=2pi-0.71499…+2pin
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024