Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2tan(x)=3csc(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2tan(x)=3csc(x)

Solution

x=3π​+2πn,x=35π​+2πn
+1
Degrees
x=60∘+360∘n,x=300∘+360∘n
Solution steps
2tan(x)=3csc(x)
Subtract 3csc(x) from both sides2tan(x)−3csc(x)=0
Express with sin, cos2⋅cos(x)sin(x)​−3⋅sin(x)1​=0
Simplify 2⋅cos(x)sin(x)​−3⋅sin(x)1​:cos(x)sin(x)2sin2(x)−3cos(x)​
2⋅cos(x)sin(x)​−3⋅sin(x)1​
2⋅cos(x)sin(x)​=cos(x)2sin(x)​
2⋅cos(x)sin(x)​
Multiply fractions: a⋅cb​=ca⋅b​=cos(x)sin(x)⋅2​
3⋅sin(x)1​=sin(x)3​
3⋅sin(x)1​
Multiply fractions: a⋅cb​=ca⋅b​=sin(x)1⋅3​
Multiply the numbers: 1⋅3=3=sin(x)3​
=cos(x)2sin(x)​−sin(x)3​
Least Common Multiplier of cos(x),sin(x):cos(x)sin(x)
cos(x),sin(x)
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in cos(x) or sin(x)=cos(x)sin(x)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM cos(x)sin(x)
For cos(x)sin(x)⋅2​:multiply the denominator and numerator by sin(x)cos(x)sin(x)⋅2​=cos(x)sin(x)sin(x)⋅2sin(x)​=cos(x)sin(x)2sin2(x)​
For sin(x)3​:multiply the denominator and numerator by cos(x)sin(x)3​=sin(x)cos(x)3cos(x)​
=cos(x)sin(x)2sin2(x)​−sin(x)cos(x)3cos(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(x)sin(x)2sin2(x)−3cos(x)​
cos(x)sin(x)2sin2(x)−3cos(x)​=0
g(x)f(x)​=0⇒f(x)=02sin2(x)−3cos(x)=0
Add 3cos(x) to both sides2sin2(x)=3cos(x)
Square both sides(2sin2(x))2=(3cos(x))2
Subtract (3cos(x))2 from both sides4sin4(x)−9cos2(x)=0
Factor 4sin4(x)−9cos2(x):(2sin2(x)+3cos(x))(2sin2(x)−3cos(x))
4sin4(x)−9cos2(x)
Rewrite 4sin4(x)−9cos2(x) as (2sin2(x))2−(3cos(x))2
4sin4(x)−9cos2(x)
Rewrite 4 as 22=22sin4(x)−9cos2(x)
Rewrite 9 as 32=22sin4(x)−32cos2(x)
Apply exponent rule: abc=(ab)csin4(x)=(sin2(x))2=22(sin2(x))2−32cos2(x)
Apply exponent rule: ambm=(ab)m22(sin2(x))2=(2sin2(x))2=(2sin2(x))2−32cos2(x)
Apply exponent rule: ambm=(ab)m32cos2(x)=(3cos(x))2=(2sin2(x))2−(3cos(x))2
=(2sin2(x))2−(3cos(x))2
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(2sin2(x))2−(3cos(x))2=(2sin2(x)+3cos(x))(2sin2(x)−3cos(x))=(2sin2(x)+3cos(x))(2sin2(x)−3cos(x))
(2sin2(x)+3cos(x))(2sin2(x)−3cos(x))=0
Solving each part separately2sin2(x)+3cos(x)=0or2sin2(x)−3cos(x)=0
2sin2(x)+3cos(x)=0:x=32π​+2πn,x=34π​+2πn
2sin2(x)+3cos(x)=0
Rewrite using trig identities
2sin2(x)+3cos(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=2(1−cos2(x))+3cos(x)
(1−cos2(x))⋅2+3cos(x)=0
Solve by substitution
(1−cos2(x))⋅2+3cos(x)=0
Let: cos(x)=u(1−u2)⋅2+3u=0
(1−u2)⋅2+3u=0:u=−21​,u=2
(1−u2)⋅2+3u=0
Expand (1−u2)⋅2+3u:2−2u2+3u
(1−u2)⋅2+3u
=2(1−u2)+3u
Expand 2(1−u2):2−2u2
2(1−u2)
Apply the distributive law: a(b−c)=ab−aca=2,b=1,c=u2=2⋅1−2u2
Multiply the numbers: 2⋅1=2=2−2u2
=2−2u2+3u
2−2u2+3u=0
Write in the standard form ax2+bx+c=0−2u2+3u+2=0
Solve with the quadratic formula
−2u2+3u+2=0
Quadratic Equation Formula:
For a=−2,b=3,c=2u1,2​=2(−2)−3±32−4(−2)⋅2​​
u1,2​=2(−2)−3±32−4(−2)⋅2​​
32−4(−2)⋅2​=5
32−4(−2)⋅2​
Apply rule −(−a)=a=32+4⋅2⋅2​
Multiply the numbers: 4⋅2⋅2=16=32+16​
32=9=9+16​
Add the numbers: 9+16=25=25​
Factor the number: 25=52=52​
Apply radical rule: nan​=a52​=5=5
u1,2​=2(−2)−3±5​
Separate the solutionsu1​=2(−2)−3+5​,u2​=2(−2)−3−5​
u=2(−2)−3+5​:−21​
2(−2)−3+5​
Remove parentheses: (−a)=−a=−2⋅2−3+5​
Add/Subtract the numbers: −3+5=2=−2⋅22​
Multiply the numbers: 2⋅2=4=−42​
Apply the fraction rule: −ba​=−ba​=−42​
Cancel the common factor: 2=−21​
u=2(−2)−3−5​:2
2(−2)−3−5​
Remove parentheses: (−a)=−a=−2⋅2−3−5​
Subtract the numbers: −3−5=−8=−2⋅2−8​
Multiply the numbers: 2⋅2=4=−4−8​
Apply the fraction rule: −b−a​=ba​=48​
Divide the numbers: 48​=2=2
The solutions to the quadratic equation are:u=−21​,u=2
Substitute back u=cos(x)cos(x)=−21​,cos(x)=2
cos(x)=−21​,cos(x)=2
cos(x)=−21​:x=32π​+2πn,x=34π​+2πn
cos(x)=−21​
General solutions for cos(x)=−21​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=32π​+2πn,x=34π​+2πn
x=32π​+2πn,x=34π​+2πn
cos(x)=2:No Solution
cos(x)=2
−1≤cos(x)≤1NoSolution
Combine all the solutionsx=32π​+2πn,x=34π​+2πn
2sin2(x)−3cos(x)=0:x=3π​+2πn,x=35π​+2πn
2sin2(x)−3cos(x)=0
Rewrite using trig identities
2sin2(x)−3cos(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=2(1−cos2(x))−3cos(x)
(1−cos2(x))⋅2−3cos(x)=0
Solve by substitution
(1−cos2(x))⋅2−3cos(x)=0
Let: cos(x)=u(1−u2)⋅2−3u=0
(1−u2)⋅2−3u=0:u=−2,u=21​
(1−u2)⋅2−3u=0
Expand (1−u2)⋅2−3u:2−2u2−3u
(1−u2)⋅2−3u
=2(1−u2)−3u
Expand 2(1−u2):2−2u2
2(1−u2)
Apply the distributive law: a(b−c)=ab−aca=2,b=1,c=u2=2⋅1−2u2
Multiply the numbers: 2⋅1=2=2−2u2
=2−2u2−3u
2−2u2−3u=0
Write in the standard form ax2+bx+c=0−2u2−3u+2=0
Solve with the quadratic formula
−2u2−3u+2=0
Quadratic Equation Formula:
For a=−2,b=−3,c=2u1,2​=2(−2)−(−3)±(−3)2−4(−2)⋅2​​
u1,2​=2(−2)−(−3)±(−3)2−4(−2)⋅2​​
(−3)2−4(−2)⋅2​=5
(−3)2−4(−2)⋅2​
Apply rule −(−a)=a=(−3)2+4⋅2⋅2​
Apply exponent rule: (−a)n=an,if n is even(−3)2=32=32+4⋅2⋅2​
Multiply the numbers: 4⋅2⋅2=16=32+16​
32=9=9+16​
Add the numbers: 9+16=25=25​
Factor the number: 25=52=52​
Apply radical rule: nan​=a52​=5=5
u1,2​=2(−2)−(−3)±5​
Separate the solutionsu1​=2(−2)−(−3)+5​,u2​=2(−2)−(−3)−5​
u=2(−2)−(−3)+5​:−2
2(−2)−(−3)+5​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅23+5​
Add the numbers: 3+5=8=−2⋅28​
Multiply the numbers: 2⋅2=4=−48​
Apply the fraction rule: −ba​=−ba​=−48​
Divide the numbers: 48​=2=−2
u=2(−2)−(−3)−5​:21​
2(−2)−(−3)−5​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅23−5​
Subtract the numbers: 3−5=−2=−2⋅2−2​
Multiply the numbers: 2⋅2=4=−4−2​
Apply the fraction rule: −b−a​=ba​=42​
Cancel the common factor: 2=21​
The solutions to the quadratic equation are:u=−2,u=21​
Substitute back u=cos(x)cos(x)=−2,cos(x)=21​
cos(x)=−2,cos(x)=21​
cos(x)=−2:No Solution
cos(x)=−2
−1≤cos(x)≤1NoSolution
cos(x)=21​:x=3π​+2πn,x=35π​+2πn
cos(x)=21​
General solutions for cos(x)=21​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=3π​+2πn,x=35π​+2πn
x=3π​+2πn,x=35π​+2πn
Combine all the solutionsx=3π​+2πn,x=35π​+2πn
Combine all the solutionsx=32π​+2πn,x=34π​+2πn,x=3π​+2πn,x=35π​+2πn
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into 2tan(x)=3csc(x)
Remove the ones that don't agree with the equation.
Check the solution 32π​+2πn:False
32π​+2πn
Plug in n=132π​+2π1
For 2tan(x)=3csc(x)plug inx=32π​+2π12tan(32π​+2π1)=3csc(32π​+2π1)
Refine−3.46410…=3.46410…
⇒False
Check the solution 34π​+2πn:False
34π​+2πn
Plug in n=134π​+2π1
For 2tan(x)=3csc(x)plug inx=34π​+2π12tan(34π​+2π1)=3csc(34π​+2π1)
Refine3.46410…=−3.46410…
⇒False
Check the solution 3π​+2πn:True
3π​+2πn
Plug in n=13π​+2π1
For 2tan(x)=3csc(x)plug inx=3π​+2π12tan(3π​+2π1)=3csc(3π​+2π1)
Refine3.46410…=3.46410…
⇒True
Check the solution 35π​+2πn:True
35π​+2πn
Plug in n=135π​+2π1
For 2tan(x)=3csc(x)plug inx=35π​+2π12tan(35π​+2π1)=3csc(35π​+2π1)
Refine−3.46410…=−3.46410…
⇒True
x=3π​+2πn,x=35π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

tan(θ)+1=sqrt(3)+sqrt(3)cot(θ)tan(θ)+1=3​+3​cot(θ)2-2cos^2(x)=2cos^2(x/2)2−2cos2(x)=2cos2(2x​)sin(x)+cos(x)=1.2,sin(2x)sin(x)+cos(x)=1.2,sin(2x)2cos(x)+3tan(x)=3sec(x)2cos(x)+3tan(x)=3sec(x)14tan^2(x)=-14tan(x)14tan2(x)=−14tan(x)

Frequently Asked Questions (FAQ)

  • What is the general solution for 2tan(x)=3csc(x) ?

    The general solution for 2tan(x)=3csc(x) is x= pi/3+2pin,x=(5pi)/3+2pin
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024