Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

12cosh(2x)+7sinh(x)-24=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

12cosh(2x)+7sinh(x)−24=0

Solution

x=ln(1.73025…),x=ln(0.45623…)
+1
Degrees
x=31.41360…∘,x=−44.96326…∘
Solution steps
12cosh(2x)+7sinh(x)−24=0
Rewrite using trig identities
12cosh(2x)+7sinh(x)−24=0
Use the Hyperbolic identity: sinh(x)=2ex−e−x​12cosh(2x)+7⋅2ex−e−x​−24=0
Use the Hyperbolic identity: cosh(x)=2ex+e−x​12⋅2e2x+e−2x​+7⋅2ex−e−x​−24=0
12⋅2e2x+e−2x​+7⋅2ex−e−x​−24=0
12⋅2e2x+e−2x​+7⋅2ex−e−x​−24=0:x=ln(1.73025…),x=ln(0.45623…)
12⋅2e2x+e−2x​+7⋅2ex−e−x​−24=0
Apply exponent rules
12⋅2e2x+e−2x​+7⋅2ex−e−x​−24=0
Apply exponent rule: abc=(ab)ce2x=(ex)2,e−2x=(ex)−2,e−x=(ex)−112⋅2(ex)2+(ex)−2​+7⋅2ex−(ex)−1​−24=0
12⋅2(ex)2+(ex)−2​+7⋅2ex−(ex)−1​−24=0
Rewrite the equation with ex=u12⋅2(u)2+(u)−2​+7⋅2u−(u)−1​−24=0
Solve 12⋅2u2+u−2​+7⋅2u−u−1​−24=0:u≈1.73025…,u≈0.45623…,u≈−0.57794…,u≈−2.19187…
12⋅2u2+u−2​+7⋅2u−u−1​−24=0
Refineu26(u4+1)​+2u7(u2−1)​−24=0
Multiply by LCM
u26(u4+1)​+2u7(u2−1)​−24=0
Find Least Common Multiplier of u2,2u:2u2
u2,2u
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in u2 or 2u=2u2
Multiply by LCM=2u2u26(u4+1)​⋅2u2+2u7(u2−1)​⋅2u2−24⋅2u2=0⋅2u2
Simplify
u26(u4+1)​⋅2u2+2u7(u2−1)​⋅2u2−24⋅2u2=0⋅2u2
Simplify u26(u4+1)​⋅2u2:12(u4+1)
u26(u4+1)​⋅2u2
Multiply fractions: a⋅cb​=ca⋅b​=u26(u4+1)⋅2u2​
Cancel the common factor: u2=6(u4+1)⋅2
Multiply the numbers: 6⋅2=12=12(u4+1)
Simplify 2u7(u2−1)​⋅2u2:7u(u2−1)
2u7(u2−1)​⋅2u2
Multiply fractions: a⋅cb​=ca⋅b​=2u7(u2−1)⋅2u2​
Cancel the common factor: 2=u7(u2−1)u2​
Cancel the common factor: u=7u(u2−1)
Simplify −24⋅2u2:−48u2
−24⋅2u2
Multiply the numbers: 24⋅2=48=−48u2
Simplify 0⋅2u2:0
0⋅2u2
Apply rule 0⋅a=0=0
12(u4+1)+7u(u2−1)−48u2=0
12(u4+1)+7u(u2−1)−48u2=0
12(u4+1)+7u(u2−1)−48u2=0
Solve 12(u4+1)+7u(u2−1)−48u2=0:u≈1.73025…,u≈0.45623…,u≈−0.57794…,u≈−2.19187…
12(u4+1)+7u(u2−1)−48u2=0
Expand 12(u4+1)+7u(u2−1)−48u2:12u4+12+7u3−7u−48u2
12(u4+1)+7u(u2−1)−48u2
Expand 12(u4+1):12u4+12
12(u4+1)
Apply the distributive law: a(b+c)=ab+aca=12,b=u4,c=1=12u4+12⋅1
Multiply the numbers: 12⋅1=12=12u4+12
=12u4+12+7u(u2−1)−48u2
Expand 7u(u2−1):7u3−7u
7u(u2−1)
Apply the distributive law: a(b−c)=ab−aca=7u,b=u2,c=1=7uu2−7u⋅1
=7u2u−7⋅1⋅u
Simplify 7u2u−7⋅1⋅u:7u3−7u
7u2u−7⋅1⋅u
7u2u=7u3
7u2u
Apply exponent rule: ab⋅ac=ab+cu2u=u2+1=7u2+1
Add the numbers: 2+1=3=7u3
7⋅1⋅u=7u
7⋅1⋅u
Multiply the numbers: 7⋅1=7=7u
=7u3−7u
=7u3−7u
=12u4+12+7u3−7u−48u2
12u4+12+7u3−7u−48u2=0
Write in the standard form an​xn+…+a1​x+a0​=012u4+7u3−48u2−7u+12=0
Find one solution for 12u4+7u3−48u2−7u+12=0 using Newton-Raphson:u≈1.73025…
12u4+7u3−48u2−7u+12=0
Newton-Raphson Approximation Definition
f(u)=12u4+7u3−48u2−7u+12
Find f′(u):48u3+21u2−96u−7
dud​(12u4+7u3−48u2−7u+12)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dud​(12u4)+dud​(7u3)−dud​(48u2)−dud​(7u)+dud​(12)
dud​(12u4)=48u3
dud​(12u4)
Take the constant out: (a⋅f)′=a⋅f′=12dud​(u4)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=12⋅4u4−1
Simplify=48u3
dud​(7u3)=21u2
dud​(7u3)
Take the constant out: (a⋅f)′=a⋅f′=7dud​(u3)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=7⋅3u3−1
Simplify=21u2
dud​(48u2)=96u
dud​(48u2)
Take the constant out: (a⋅f)′=a⋅f′=48dud​(u2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=48⋅2u2−1
Simplify=96u
dud​(7u)=7
dud​(7u)
Take the constant out: (a⋅f)′=a⋅f′=7dudu​
Apply the common derivative: dudu​=1=7⋅1
Simplify=7
dud​(12)=0
dud​(12)
Derivative of a constant: dxd​(a)=0=0
=48u3+21u2−96u−7+0
Simplify=48u3+21u2−96u−7
Let u0​=2Compute un+1​ until Δun+1​<0.000001
u1​=1.79925…:Δu1​=0.20074…
f(u0​)=12⋅24+7⋅23−48⋅22−7⋅2+12=54f′(u0​)=48⋅23+21⋅22−96⋅2−7=269u1​=1.79925…
Δu1​=∣1.79925…−2∣=0.20074…Δu1​=0.20074…
u2​=1.73639…:Δu2​=0.06285…
f(u1​)=12⋅1.79925…4+7⋅1.79925…3−48⋅1.79925…2−7⋅1.79925…+12=10.55028…f′(u1​)=48⋅1.79925…3+21⋅1.79925…2−96⋅1.79925…−7=167.84443…u2​=1.73639…
Δu2​=∣1.73639…−1.79925…∣=0.06285…Δu2​=0.06285…
u3​=1.73031…:Δu3​=0.00608…
f(u2​)=12⋅1.73639…4+7⋅1.73639…3−48⋅1.73639…2−7⋅1.73639…+12=0.85758…f′(u2​)=48⋅1.73639…3+21⋅1.73639…2−96⋅1.73639…−7=140.92085…u3​=1.73031…
Δu3​=∣1.73031…−1.73639…∣=0.00608…Δu3​=0.00608…
u4​=1.73025…:Δu4​=0.00005…
f(u3​)=12⋅1.73031…4+7⋅1.73031…3−48⋅1.73031…2−7⋅1.73031…+12=0.00759…f′(u3​)=48⋅1.73031…3+21⋅1.73031…2−96⋅1.73031…−7=138.42910…u4​=1.73025…
Δu4​=∣1.73025…−1.73031…∣=0.00005…Δu4​=0.00005…
u5​=1.73025…:Δu5​=4.43112E−9
f(u4​)=12⋅1.73025…4+7⋅1.73025…3−48⋅1.73025…2−7⋅1.73025…+12=6.13297E−7f′(u4​)=48⋅1.73025…3+21⋅1.73025…2−96⋅1.73025…−7=138.40674…u5​=1.73025…
Δu5​=∣1.73025…−1.73025…∣=4.43112E−9Δu5​=4.43112E−9
u≈1.73025…
Apply long division:u−1.73025…12u4+7u3−48u2−7u+12​=12u3+27.76310…u2+0.03734…u−6.93537…
12u3+27.76310…u2+0.03734…u−6.93537…≈0
Find one solution for 12u3+27.76310…u2+0.03734…u−6.93537…=0 using Newton-Raphson:u≈0.45623…
12u3+27.76310…u2+0.03734…u−6.93537…=0
Newton-Raphson Approximation Definition
f(u)=12u3+27.76310…u2+0.03734…u−6.93537…
Find f′(u):36u2+55.52620…u+0.03734…
dud​(12u3+27.76310…u2+0.03734…u−6.93537…)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dud​(12u3)+dud​(27.76310…u2)+dud​(0.03734…u)−dud​(6.93537…)
dud​(12u3)=36u2
dud​(12u3)
Take the constant out: (a⋅f)′=a⋅f′=12dud​(u3)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=12⋅3u3−1
Simplify=36u2
dud​(27.76310…u2)=55.52620…u
dud​(27.76310…u2)
Take the constant out: (a⋅f)′=a⋅f′=27.76310…dud​(u2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=27.76310…⋅2u2−1
Simplify=55.52620…u
dud​(0.03734…u)=0.03734…
dud​(0.03734…u)
Take the constant out: (a⋅f)′=a⋅f′=0.03734…dudu​
Apply the common derivative: dudu​=1=0.03734…⋅1
Simplify=0.03734…
dud​(6.93537…)=0
dud​(6.93537…)
Derivative of a constant: dxd​(a)=0=0
=36u2+55.52620…u+0.03734…−0
Simplify=36u2+55.52620…u+0.03734…
Let u0​=1Compute un+1​ until Δun+1​<0.000001
u1​=0.6410682029:Δu1​=0.3589317971
f(u0​)=12⋅13+27.76310…⋅12+0.03734…⋅1−6.93537…=32.86507…f′(u0​)=36⋅12+55.52620…⋅1+0.03734…=91.56355…u1​=0.6410682029
Δu1​=∣0.6410682029−1∣=0.3589317971Δu1​=0.3589317971
u2​=0.48917…:Δu2​=0.15189…
f(u1​)=12⋅0.64106820293+27.76310…⋅0.64106820292+0.03734…⋅0.6410682029−6.93537…=7.65982…f′(u1​)=36⋅0.64106820292+55.52620…⋅0.6410682029+0.03734…=50.42829…u2​=0.48917…
Δu2​=∣0.48917…−0.6410682029∣=0.15189…Δu2​=0.15189…
u3​=0.45759…:Δu3​=0.03157…
f(u2​)=12⋅0.48917…3+27.76310…⋅0.48917…2+0.03734…⋅0.48917…−6.93537…=1.13097…f′(u2​)=36⋅0.48917…2+55.52620…⋅0.48917…+0.03734…=35.81369…u3​=0.45759…
Δu3​=∣0.45759…−0.48917…∣=0.03157…Δu3​=0.03157…
u4​=0.45623…:Δu4​=0.00136…
f(u3​)=12⋅0.45759…3+27.76310…⋅0.45759…2+0.03734…⋅0.45759…−6.93537…=0.04487…f′(u3​)=36⋅0.45759…2+55.52620…⋅0.45759…+0.03734…=32.98387…u4​=0.45623…
Δu4​=∣0.45623…−0.45759…∣=0.00136…Δu4​=0.00136…
u5​=0.45623…:Δu5​=2.49018E−6
f(u4​)=12⋅0.45623…3+27.76310…⋅0.45623…2+0.03734…⋅0.45623…−6.93537…=0.00008…f′(u4​)=36⋅0.45623…2+55.52620…⋅0.45623…+0.03734…=32.86358…u5​=0.45623…
Δu5​=∣0.45623…−0.45623…∣=2.49018E−6Δu5​=2.49018E−6
u6​=0.45623…:Δu6​=8.33775E−12
f(u5​)=12⋅0.45623…3+27.76310…⋅0.45623…2+0.03734…⋅0.45623…−6.93537…=2.74007E−10f′(u5​)=36⋅0.45623…2+55.52620…⋅0.45623…+0.03734…=32.86336…u6​=0.45623…
Δu6​=∣0.45623…−0.45623…∣=8.33775E−12Δu6​=8.33775E−12
u≈0.45623…
Apply long division:u−0.45623…12u3+27.76310…u2+0.03734…u−6.93537…​=12u2+33.23786…u+15.20147…
12u2+33.23786…u+15.20147…≈0
Find one solution for 12u2+33.23786…u+15.20147…=0 using Newton-Raphson:u≈−0.57794…
12u2+33.23786…u+15.20147…=0
Newton-Raphson Approximation Definition
f(u)=12u2+33.23786…u+15.20147…
Find f′(u):24u+33.23786…
dud​(12u2+33.23786…u+15.20147…)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dud​(12u2)+dud​(33.23786…u)+dud​(15.20147…)
dud​(12u2)=24u
dud​(12u2)
Take the constant out: (a⋅f)′=a⋅f′=12dud​(u2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=12⋅2u2−1
Simplify=24u
dud​(33.23786…u)=33.23786…
dud​(33.23786…u)
Take the constant out: (a⋅f)′=a⋅f′=33.23786…dudu​
Apply the common derivative: dudu​=1=33.23786…⋅1
Simplify=33.23786…
dud​(15.20147…)=0
dud​(15.20147…)
Derivative of a constant: dxd​(a)=0=0
=24u+33.23786…+0
Simplify=24u+33.23786…
Let u0​=0Compute un+1​ until Δun+1​<0.000001
u1​=−0.45735…:Δu1​=0.45735…
f(u0​)=12⋅02+33.23786…⋅0+15.20147…=15.20147…f′(u0​)=24⋅0+33.23786…=33.23786…u1​=−0.45735…
Δu1​=∣−0.45735…−0∣=0.45735…Δu1​=0.45735…
u2​=−0.57010…:Δu2​=0.11275…
f(u1​)=12(−0.45735…)2+33.23786…(−0.45735…)+15.20147…=2.51007…f′(u1​)=24(−0.45735…)+33.23786…=22.26136…u2​=−0.57010…
Δu2​=∣−0.57010…−(−0.45735…)∣=0.11275…Δu2​=0.11275…
u3​=−0.57791…:Δu3​=0.00780…
f(u2​)=12(−0.57010…)2+33.23786…(−0.57010…)+15.20147…=0.15256…f′(u2​)=24(−0.57010…)+33.23786…=19.55525…u3​=−0.57791…
Δu3​=∣−0.57791…−(−0.57010…)∣=0.00780…Δu3​=0.00780…
u4​=−0.57794…:Δu4​=0.00003…
f(u3​)=12(−0.57791…)2+33.23786…(−0.57791…)+15.20147…=0.00073…f′(u3​)=24(−0.57791…)+33.23786…=19.36801…u4​=−0.57794…
Δu4​=∣−0.57794…−(−0.57791…)∣=0.00003…Δu4​=0.00003…
u5​=−0.57794…:Δu5​=8.81165E−10
f(u4​)=12(−0.57794…)2+33.23786…(−0.57794…)+15.20147…=1.70656E−8f′(u4​)=24(−0.57794…)+33.23786…=19.36711…u5​=−0.57794…
Δu5​=∣−0.57794…−(−0.57794…)∣=8.81165E−10Δu5​=8.81165E−10
u≈−0.57794…
Apply long division:u+0.57794…12u2+33.23786…u+15.20147…​=12u+26.30249…
12u+26.30249…≈0
u≈−2.19187…
The solutions areu≈1.73025…,u≈0.45623…,u≈−0.57794…,u≈−2.19187…
u≈1.73025…,u≈0.45623…,u≈−0.57794…,u≈−2.19187…
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of 122u2+u−2​+72u−u−1​−24 and compare to zero
Solve u2=0:u=0
u2=0
Apply rule xn=0⇒x=0
u=0
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u≈1.73025…,u≈0.45623…,u≈−0.57794…,u≈−2.19187…
u≈1.73025…,u≈0.45623…,u≈−0.57794…,u≈−2.19187…
Substitute back u=ex,solve for x
Solve ex=1.73025…:x=ln(1.73025…)
ex=1.73025…
Apply exponent rules
ex=1.73025…
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln(1.73025…)
Apply log rule: ln(ea)=aln(ex)=xx=ln(1.73025…)
x=ln(1.73025…)
Solve ex=0.45623…:x=ln(0.45623…)
ex=0.45623…
Apply exponent rules
ex=0.45623…
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln(0.45623…)
Apply log rule: ln(ea)=aln(ex)=xx=ln(0.45623…)
x=ln(0.45623…)
Solve ex=−0.57794…:No Solution for x∈R
ex=−0.57794…
af(x) cannot be zero or negative for x∈RNoSolutionforx∈R
Solve ex=−2.19187…:No Solution for x∈R
ex=−2.19187…
af(x) cannot be zero or negative for x∈RNoSolutionforx∈R
x=ln(1.73025…),x=ln(0.45623…)
x=ln(1.73025…),x=ln(0.45623…)

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sec^2(θ)-1=0sec2(θ)−1=02sin(θ)cos(θ)=-sin(θ)2sin(θ)cos(θ)=−sin(θ)sec(θ)= 7/6sec(θ)=67​2cos^2(x)+7sin(x)-5=02cos2(x)+7sin(x)−5=08tan(2x)-16cos(x)=08tan(2x)−16cos(x)=0

Frequently Asked Questions (FAQ)

  • What is the general solution for 12cosh(2x)+7sinh(x)-24=0 ?

    The general solution for 12cosh(2x)+7sinh(x)-24=0 is x=ln(1.73025…),x=ln(0.45623…)
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024