Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

6sin(x)-2cos(x)=7

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

6sin(x)−2cos(x)=7

Solution

NoSolutionforx∈R
Solution steps
6sin(x)−2cos(x)=7
Add 2cos(x) to both sides6sin(x)=7+2cos(x)
Square both sides(6sin(x))2=(7+2cos(x))2
Subtract (7+2cos(x))2 from both sides36sin2(x)−49−28cos(x)−4cos2(x)=0
Rewrite using trig identities
−49−28cos(x)+36sin2(x)−4cos2(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=−49−28cos(x)+36(1−cos2(x))−4cos2(x)
Simplify −49−28cos(x)+36(1−cos2(x))−4cos2(x):−40cos2(x)−28cos(x)−13
−49−28cos(x)+36(1−cos2(x))−4cos2(x)
Expand 36(1−cos2(x)):36−36cos2(x)
36(1−cos2(x))
Apply the distributive law: a(b−c)=ab−aca=36,b=1,c=cos2(x)=36⋅1−36cos2(x)
Multiply the numbers: 36⋅1=36=36−36cos2(x)
=−49−28cos(x)+36−36cos2(x)−4cos2(x)
Simplify −49−28cos(x)+36−36cos2(x)−4cos2(x):−40cos2(x)−28cos(x)−13
−49−28cos(x)+36−36cos2(x)−4cos2(x)
Add similar elements: −36cos2(x)−4cos2(x)=−40cos2(x)=−49−28cos(x)+36−40cos2(x)
Group like terms=−28cos(x)−40cos2(x)−49+36
Add/Subtract the numbers: −49+36=−13=−40cos2(x)−28cos(x)−13
=−40cos2(x)−28cos(x)−13
=−40cos2(x)−28cos(x)−13
−13−28cos(x)−40cos2(x)=0
Solve by substitution
−13−28cos(x)−40cos2(x)=0
Let: cos(x)=u−13−28u−40u2=0
−13−28u−40u2=0:u=−207​−i209​,u=−207​+i209​
−13−28u−40u2=0
Write in the standard form ax2+bx+c=0−40u2−28u−13=0
Solve with the quadratic formula
−40u2−28u−13=0
Quadratic Equation Formula:
For a=−40,b=−28,c=−13u1,2​=2(−40)−(−28)±(−28)2−4(−40)(−13)​​
u1,2​=2(−40)−(−28)±(−28)2−4(−40)(−13)​​
Simplify (−28)2−4(−40)(−13)​:36i
(−28)2−4(−40)(−13)​
Apply rule −(−a)=a=(−28)2−4⋅40⋅13​
Apply exponent rule: (−a)n=an,if n is even(−28)2=282=282−4⋅40⋅13​
Multiply the numbers: 4⋅40⋅13=2080=282−2080​
Apply imaginary number rule: −a​=ia​=i2080−282​
−282+2080​=36
−282+2080​
282=784=−784+2080​
Add/Subtract the numbers: −784+2080=1296=1296​
Factor the number: 1296=362=362​
Apply radical rule: nan​=a362​=36=36
=36i
u1,2​=2(−40)−(−28)±36i​
Separate the solutionsu1​=2(−40)−(−28)+36i​,u2​=2(−40)−(−28)−36i​
u=2(−40)−(−28)+36i​:−207​−i209​
2(−40)−(−28)+36i​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅4028+36i​
Multiply the numbers: 2⋅40=80=−8028+36i​
Apply the fraction rule: −ba​=−ba​=−8028+36i​
Cancel 8028+36i​:207+9i​
8028+36i​
Factor 28+36i:4(7+9i)
28+36i
Rewrite as=4⋅7+4⋅9i
Factor out common term 4=4(7+9i)
=804(7+9i)​
Cancel the common factor: 4=207+9i​
=−207+9i​
Rewrite −207+9i​ in standard complex form: −207​−209​i
−207+9i​
Apply the fraction rule: ca±b​=ca​±cb​207+9i​=−(207​)−(209i​)=−(207​)−(209i​)
Remove parentheses: (a)=a=−207​−209i​
=−207​−209​i
u=2(−40)−(−28)−36i​:−207​+i209​
2(−40)−(−28)−36i​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅4028−36i​
Multiply the numbers: 2⋅40=80=−8028−36i​
Apply the fraction rule: −ba​=−ba​=−8028−36i​
Cancel 8028−36i​:207−9i​
8028−36i​
Factor 28−36i:4(7−9i)
28−36i
Rewrite as=4⋅7−4⋅9i
Factor out common term 4=4(7−9i)
=804(7−9i)​
Cancel the common factor: 4=207−9i​
=−207−9i​
Rewrite −207−9i​ in standard complex form: −207​+209​i
−207−9i​
Apply the fraction rule: ca±b​=ca​±cb​207−9i​=−(207​)−(−209i​)=−(207​)−(−209i​)
Remove parentheses: (a)=a,−(−a)=a=−207​+209i​
=−207​+209​i
The solutions to the quadratic equation are:u=−207​−i209​,u=−207​+i209​
Substitute back u=cos(x)cos(x)=−207​−i209​,cos(x)=−207​+i209​
cos(x)=−207​−i209​,cos(x)=−207​+i209​
cos(x)=−207​−i209​:No Solution
cos(x)=−207​−i209​
NoSolution
cos(x)=−207​+i209​:No Solution
cos(x)=−207​+i209​
NoSolution
Combine all the solutionsNoSolution
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into 6sin(x)−2cos(x)=7
Remove the ones that don't agree with the equation.
NoSolutionforx∈R

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

csc^2(x)+4csc(x)-5=0csc2(x)+4csc(x)−5=08sin(x)=4cos^2(x)-78sin(x)=4cos2(x)−7cos(x)-1=0,0<= x<= 2picos(x)−1=0,0≤x≤2πsin(x)=(4.8)/(5.5)sin(x)=5.54.8​2cos^2(x)=4-5sin(x)2cos2(x)=4−5sin(x)

Frequently Asked Questions (FAQ)

  • What is the general solution for 6sin(x)-2cos(x)=7 ?

    The general solution for 6sin(x)-2cos(x)=7 is No Solution for x\in\mathbb{R}
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024