Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

3cos(x)cot(x)+7=5csc(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

3cos(x)cot(x)+7=5csc(x)

Solution

x=0.33983…+2πn,x=π−0.33983…+2πn
+1
Degrees
x=19.47122…∘+360∘n,x=160.52877…∘+360∘n
Solution steps
3cos(x)cot(x)+7=5csc(x)
Subtract 5csc(x) from both sides3cos(x)cot(x)+7−5csc(x)=0
Express with sin, cos3cos(x)sin(x)cos(x)​+7−5⋅sin(x)1​=0
Simplify 3cos(x)sin(x)cos(x)​+7−5⋅sin(x)1​:sin(x)3cos2(x)−5+7sin(x)​
3cos(x)sin(x)cos(x)​+7−5⋅sin(x)1​
3cos(x)sin(x)cos(x)​=sin(x)3cos2(x)​
3cos(x)sin(x)cos(x)​
Multiply fractions: a⋅cb​=ca⋅b​=sin(x)cos(x)⋅3cos(x)​
cos(x)⋅3cos(x)=3cos2(x)
cos(x)⋅3cos(x)
Apply exponent rule: ab⋅ac=ab+ccos(x)cos(x)=cos1+1(x)=3cos1+1(x)
Add the numbers: 1+1=2=3cos2(x)
=sin(x)3cos2(x)​
5⋅sin(x)1​=sin(x)5​
5⋅sin(x)1​
Multiply fractions: a⋅cb​=ca⋅b​=sin(x)1⋅5​
Multiply the numbers: 1⋅5=5=sin(x)5​
=sin(x)3cos2(x)​+7−sin(x)5​
Combine the fractions sin(x)3cos2(x)​−sin(x)5​:sin(x)3cos2(x)−5​
Apply rule ca​±cb​=ca±b​=sin(x)3cos2(x)−5​
=sin(x)3cos2(x)−5​+7
Convert element to fraction: 7=sin(x)7sin(x)​=sin(x)3cos2(x)−5​+sin(x)7sin(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sin(x)3cos2(x)−5+7sin(x)​
sin(x)3cos2(x)−5+7sin(x)​=0
g(x)f(x)​=0⇒f(x)=03cos2(x)−5+7sin(x)=0
Subtract 7sin(x) from both sides3cos2(x)−5=−7sin(x)
Square both sides(3cos2(x)−5)2=(−7sin(x))2
Subtract (−7sin(x))2 from both sides(3cos2(x)−5)2−49sin2(x)=0
Factor (3cos2(x)−5)2−49sin2(x):(3cos2(x)−5+7sin(x))(3cos2(x)−5−7sin(x))
(3cos2(x)−5)2−49sin2(x)
Rewrite (3cos2(x)−5)2−49sin2(x) as (3cos2(x)−5)2−(7sin(x))2
(3cos2(x)−5)2−49sin2(x)
Rewrite 49 as 72=(3cos2(x)−5)2−72sin2(x)
Apply exponent rule: ambm=(ab)m72sin2(x)=(7sin(x))2=(3cos2(x)−5)2−(7sin(x))2
=(3cos2(x)−5)2−(7sin(x))2
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(3cos2(x)−5)2−(7sin(x))2=((3cos2(x)−5)+7sin(x))((3cos2(x)−5)−7sin(x))=((3cos2(x)−5)+7sin(x))((3cos2(x)−5)−7sin(x))
Refine=(3cos2(x)+7sin(x)−5)(3cos2(x)−7sin(x)−5)
(3cos2(x)−5+7sin(x))(3cos2(x)−5−7sin(x))=0
Solving each part separately3cos2(x)−5+7sin(x)=0or3cos2(x)−5−7sin(x)=0
3cos2(x)−5+7sin(x)=0:x=arcsin(31​)+2πn,x=π−arcsin(31​)+2πn
3cos2(x)−5+7sin(x)=0
Rewrite using trig identities
−5+3cos2(x)+7sin(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=−5+3(1−sin2(x))+7sin(x)
Simplify −5+3(1−sin2(x))+7sin(x):7sin(x)−3sin2(x)−2
−5+3(1−sin2(x))+7sin(x)
Expand 3(1−sin2(x)):3−3sin2(x)
3(1−sin2(x))
Apply the distributive law: a(b−c)=ab−aca=3,b=1,c=sin2(x)=3⋅1−3sin2(x)
Multiply the numbers: 3⋅1=3=3−3sin2(x)
=−5+3−3sin2(x)+7sin(x)
Add/Subtract the numbers: −5+3=−2=7sin(x)−3sin2(x)−2
=7sin(x)−3sin2(x)−2
−2−3sin2(x)+7sin(x)=0
Solve by substitution
−2−3sin2(x)+7sin(x)=0
Let: sin(x)=u−2−3u2+7u=0
−2−3u2+7u=0:u=31​,u=2
−2−3u2+7u=0
Write in the standard form ax2+bx+c=0−3u2+7u−2=0
Solve with the quadratic formula
−3u2+7u−2=0
Quadratic Equation Formula:
For a=−3,b=7,c=−2u1,2​=2(−3)−7±72−4(−3)(−2)​​
u1,2​=2(−3)−7±72−4(−3)(−2)​​
72−4(−3)(−2)​=5
72−4(−3)(−2)​
Apply rule −(−a)=a=72−4⋅3⋅2​
Multiply the numbers: 4⋅3⋅2=24=72−24​
72=49=49−24​
Subtract the numbers: 49−24=25=25​
Factor the number: 25=52=52​
Apply radical rule: nan​=a52​=5=5
u1,2​=2(−3)−7±5​
Separate the solutionsu1​=2(−3)−7+5​,u2​=2(−3)−7−5​
u=2(−3)−7+5​:31​
2(−3)−7+5​
Remove parentheses: (−a)=−a=−2⋅3−7+5​
Add/Subtract the numbers: −7+5=−2=−2⋅3−2​
Multiply the numbers: 2⋅3=6=−6−2​
Apply the fraction rule: −b−a​=ba​=62​
Cancel the common factor: 2=31​
u=2(−3)−7−5​:2
2(−3)−7−5​
Remove parentheses: (−a)=−a=−2⋅3−7−5​
Subtract the numbers: −7−5=−12=−2⋅3−12​
Multiply the numbers: 2⋅3=6=−6−12​
Apply the fraction rule: −b−a​=ba​=612​
Divide the numbers: 612​=2=2
The solutions to the quadratic equation are:u=31​,u=2
Substitute back u=sin(x)sin(x)=31​,sin(x)=2
sin(x)=31​,sin(x)=2
sin(x)=31​:x=arcsin(31​)+2πn,x=π−arcsin(31​)+2πn
sin(x)=31​
Apply trig inverse properties
sin(x)=31​
General solutions for sin(x)=31​sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πnx=arcsin(31​)+2πn,x=π−arcsin(31​)+2πn
x=arcsin(31​)+2πn,x=π−arcsin(31​)+2πn
sin(x)=2:No Solution
sin(x)=2
−1≤sin(x)≤1NoSolution
Combine all the solutionsx=arcsin(31​)+2πn,x=π−arcsin(31​)+2πn
3cos2(x)−5−7sin(x)=0:x=arcsin(−31​)+2πn,x=π+arcsin(31​)+2πn
3cos2(x)−5−7sin(x)=0
Rewrite using trig identities
−5+3cos2(x)−7sin(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=−5+3(1−sin2(x))−7sin(x)
Simplify −5+3(1−sin2(x))−7sin(x):−3sin2(x)−7sin(x)−2
−5+3(1−sin2(x))−7sin(x)
Expand 3(1−sin2(x)):3−3sin2(x)
3(1−sin2(x))
Apply the distributive law: a(b−c)=ab−aca=3,b=1,c=sin2(x)=3⋅1−3sin2(x)
Multiply the numbers: 3⋅1=3=3−3sin2(x)
=−5+3−3sin2(x)−7sin(x)
Add/Subtract the numbers: −5+3=−2=−3sin2(x)−7sin(x)−2
=−3sin2(x)−7sin(x)−2
−2−3sin2(x)−7sin(x)=0
Solve by substitution
−2−3sin2(x)−7sin(x)=0
Let: sin(x)=u−2−3u2−7u=0
−2−3u2−7u=0:u=−2,u=−31​
−2−3u2−7u=0
Write in the standard form ax2+bx+c=0−3u2−7u−2=0
Solve with the quadratic formula
−3u2−7u−2=0
Quadratic Equation Formula:
For a=−3,b=−7,c=−2u1,2​=2(−3)−(−7)±(−7)2−4(−3)(−2)​​
u1,2​=2(−3)−(−7)±(−7)2−4(−3)(−2)​​
(−7)2−4(−3)(−2)​=5
(−7)2−4(−3)(−2)​
Apply rule −(−a)=a=(−7)2−4⋅3⋅2​
Apply exponent rule: (−a)n=an,if n is even(−7)2=72=72−4⋅3⋅2​
Multiply the numbers: 4⋅3⋅2=24=72−24​
72=49=49−24​
Subtract the numbers: 49−24=25=25​
Factor the number: 25=52=52​
Apply radical rule: nan​=a52​=5=5
u1,2​=2(−3)−(−7)±5​
Separate the solutionsu1​=2(−3)−(−7)+5​,u2​=2(−3)−(−7)−5​
u=2(−3)−(−7)+5​:−2
2(−3)−(−7)+5​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅37+5​
Add the numbers: 7+5=12=−2⋅312​
Multiply the numbers: 2⋅3=6=−612​
Apply the fraction rule: −ba​=−ba​=−612​
Divide the numbers: 612​=2=−2
u=2(−3)−(−7)−5​:−31​
2(−3)−(−7)−5​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅37−5​
Subtract the numbers: 7−5=2=−2⋅32​
Multiply the numbers: 2⋅3=6=−62​
Apply the fraction rule: −ba​=−ba​=−62​
Cancel the common factor: 2=−31​
The solutions to the quadratic equation are:u=−2,u=−31​
Substitute back u=sin(x)sin(x)=−2,sin(x)=−31​
sin(x)=−2,sin(x)=−31​
sin(x)=−2:No Solution
sin(x)=−2
−1≤sin(x)≤1NoSolution
sin(x)=−31​:x=arcsin(−31​)+2πn,x=π+arcsin(31​)+2πn
sin(x)=−31​
Apply trig inverse properties
sin(x)=−31​
General solutions for sin(x)=−31​sin(x)=−a⇒x=arcsin(−a)+2πn,x=π+arcsin(a)+2πnx=arcsin(−31​)+2πn,x=π+arcsin(31​)+2πn
x=arcsin(−31​)+2πn,x=π+arcsin(31​)+2πn
Combine all the solutionsx=arcsin(−31​)+2πn,x=π+arcsin(31​)+2πn
Combine all the solutionsx=arcsin(31​)+2πn,x=π−arcsin(31​)+2πn,x=arcsin(−31​)+2πn,x=π+arcsin(31​)+2πn
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into 3cos(x)cot(x)+7=5csc(x)
Remove the ones that don't agree with the equation.
Check the solution arcsin(31​)+2πn:True
arcsin(31​)+2πn
Plug in n=1arcsin(31​)+2π1
For 3cos(x)cot(x)+7=5csc(x)plug inx=arcsin(31​)+2π13cos(arcsin(31​)+2π1)cot(arcsin(31​)+2π1)+7=5csc(arcsin(31​)+2π1)
Refine15=15
⇒True
Check the solution π−arcsin(31​)+2πn:True
π−arcsin(31​)+2πn
Plug in n=1π−arcsin(31​)+2π1
For 3cos(x)cot(x)+7=5csc(x)plug inx=π−arcsin(31​)+2π13cos(π−arcsin(31​)+2π1)cot(π−arcsin(31​)+2π1)+7=5csc(π−arcsin(31​)+2π1)
Refine15=15
⇒True
Check the solution arcsin(−31​)+2πn:False
arcsin(−31​)+2πn
Plug in n=1arcsin(−31​)+2π1
For 3cos(x)cot(x)+7=5csc(x)plug inx=arcsin(−31​)+2π13cos(arcsin(−31​)+2π1)cot(arcsin(−31​)+2π1)+7=5csc(arcsin(−31​)+2π1)
Refine−1=−15
⇒False
Check the solution π+arcsin(31​)+2πn:False
π+arcsin(31​)+2πn
Plug in n=1π+arcsin(31​)+2π1
For 3cos(x)cot(x)+7=5csc(x)plug inx=π+arcsin(31​)+2π13cos(π+arcsin(31​)+2π1)cot(π+arcsin(31​)+2π1)+7=5csc(π+arcsin(31​)+2π1)
Refine−1=−15
⇒False
x=arcsin(31​)+2πn,x=π−arcsin(31​)+2πn
Show solutions in decimal formx=0.33983…+2πn,x=π−0.33983…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

-10sin(2x)=0−10sin(2x)=0sec(x)sin(x)-3sin(x)=0,0<= x<= 360sec(x)sin(x)−3sin(x)=0,0≤x≤360∘4sin(x/2)-1=14sin(2x​)−1=13sec(θ)+6=03sec(θ)+6=0sin(x)-sin(x)*cos(x)=0,0<= x<= 2pisin(x)−sin(x)⋅cos(x)=0,0≤x≤2π

Frequently Asked Questions (FAQ)

  • What is the general solution for 3cos(x)cot(x)+7=5csc(x) ?

    The general solution for 3cos(x)cot(x)+7=5csc(x) is x=0.33983…+2pin,x=pi-0.33983…+2pin
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024