Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2cos^2(x)-sqrt(3cos(x))=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2cos2(x)−3cos(x)​=0

Solution

x=2π​+2πn,x=23π​+2πn,x=0.43097…+2πn,x=2π−0.43097…+2πn
+1
Degrees
x=90∘+360∘n,x=270∘+360∘n,x=24.69285…∘+360∘n,x=335.30714…∘+360∘n
Solution steps
2cos2(x)−3cos(x)​=0
Solve by substitution
2cos2(x)−3cos(x)​=0
Let: cos(x)=u2u2−3u​=0
2u2−3u​=0:u=0,u=343​​
2u2−3u​=0
Remove square roots
2u2−3u​=0
Subtract 2u2 from both sides2u2−3u​−2u2=0−2u2
Simplify−3u​=−2u2
Square both sides:3u=4u4
2u2−3u​=0
(−3u​)2=(−2u2)2
Expand (−3u​)2:3u
(−3u​)2
Apply exponent rule: (−a)n=an,if n is even(−3u​)2=(3u​)2=(3u​)2
Apply radical rule: a​=a21​=((3u)21​)2
Apply exponent rule: (ab)c=abc=(3u)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3u
Expand (−2u2)2:4u4
(−2u2)2
Apply exponent rule: (−a)n=an,if n is even(−2u2)2=(2u2)2=(2u2)2
Apply exponent rule: (a⋅b)n=anbn=22(u2)2
(u2)2:u4
Apply exponent rule: (ab)c=abc=u2⋅2
Multiply the numbers: 2⋅2=4=u4
=22u4
22=4=4u4
3u=4u4
3u=4u4
3u=4u4
Solve 3u=4u4:u=0,u=343​​
3u=4u4
Move 4u4to the left side
3u=4u4
Subtract 4u4 from both sides3u−4u4=4u4−4u4
Simplify3u−4u4=0
3u−4u4=0
Factor 3u−4u4:−u(34​u−33​)(432​u2+312​u+332​)
3u−4u4
Factor out common term −u:−u(4u3−3)
−4u4+3u
Apply exponent rule: ab+c=abacu4=u3u=−4u3u+3u
Factor out common term −u=−u(4u3−3)
=−u(4u3−3)
Factor 4u3−3:(34​u−33​)((34​)2u2+33​34​u+(33​)2)
4u3−3
Rewrite 4u3−3 as (34​u)3−(33​)3
4u3−3
Apply radical rule: a=(a​)24=(34​)3=(34​)3u3−3
Apply radical rule: a=(a​)23=(33​)3=(34​)3u3−(33​)3
Apply exponent rule: ambm=(ab)m(34​)3u3=(34​u)3=(34​u)3−(33​)3
=(34​u)3−(33​)3
Apply Difference of Cubes Formula: x3−y3=(x−y)(x2+xy+y2)(34​u)3−(33​)3=(34​u−33​)((34​)2u2+33​34​u+(33​)2)=(34​u−33​)((34​)2u2+33​34​u+(33​)2)
=−u(34​u−33​)((34​)2u2+33​34​u+(33​)2)
Refine=−u(34​u−33​)(432​u2+312​u+332​)
−u(34​u−33​)(432​u2+312​u+332​)=0
Using the Zero Factor Principle: If ab=0then a=0or b=0u=0or34​u−33​=0or432​u2+312​u+332​=0
Solve 34​u−33​=0:u=343​​
34​u−33​=0
Move 33​to the right side
34​u−33​=0
Add 33​ to both sides34​u−33​+33​=0+33​
Simplify34​u=33​
34​u=33​
Divide both sides by 34​
34​u=33​
Divide both sides by 34​34​34​u​=34​33​​
Simplify
34​34​u​=34​33​​
Simplify 34​34​u​:u
34​34​u​
Cancel the common factor: 34​=u
Simplify 34​33​​:343​​
34​33​​
Combine same powers : ny​nx​​=nyx​​=343​​
u=343​​
u=343​​
u=343​​
Solve 432​u2+312​u+332​=0:No Solution for u∈R
432​u2+312​u+332​=0
Discriminant 432​u2+312​u+332​=0:−3⋅1232​
432​u2+312​u+332​=0
For a quadratic equation of the form ax2+bx+c=0 the discriminant is b2−4acFor a=432​,b=312​,c=332​:(312​)2−4⋅432​⋅332​(312​)2−4⋅432​⋅332​
Expand (312​)2−4⋅432​⋅332​:−3⋅1232​
(312​)2−4⋅432​⋅332​
(312​)2=1232​
(312​)2
Apply radical rule: na​=an1​=(1231​)2
Apply exponent rule: (ab)c=abc=1231​⋅2
31​⋅2=32​
31​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=31⋅2​
Multiply the numbers: 1⋅2=2=32​
=1232​
4⋅432​⋅332​=4⋅1232​
4⋅432​⋅332​
Apply exponent rule: ambm=(ab)m432​⋅332​=(4⋅3)32​=4(4⋅3)32​
Multiply the numbers: 4⋅3=12=4⋅1232​
=1232​−4⋅1232​
Add similar elements: 1232​−4⋅1232​=−3⋅1232​=−3⋅1232​
−3⋅1232​
Discriminant cannot be negative for u∈R
The solution isNoSolutionforu∈R
The solutions areu=0,u=343​​
u=0,u=343​​
Verify Solutions:u=0True,u=343​​True
Check the solutions by plugging them into 2u2−3u​=0
Remove the ones that don't agree with the equation.
Plug in u=0:True
2⋅02−3⋅0​=0
2⋅02−3⋅0​=0
2⋅02−3⋅0​
Apply rule 0a=002=0=2⋅0−3⋅0​
2⋅0=0
2⋅0
Apply rule 0⋅a=0=0
3⋅0​=0
3⋅0​
Apply rule 0⋅a=0=0​
Apply rule 0​=0=0
=0−0
Subtract the numbers: 0−0=0=0
0=0
True
Plug in u=343​​:True
2(343​​)2−3343​​​=0
2(343​​)2−3343​​​=2(43​)32​−3​643​​
2(343​​)2−3343​​​
2(343​​)2=2(43​)32​
2(343​​)2
(343​​)2=(43​)32​
(343​​)2
Apply radical rule: na​=an1​=((43​)31​)2
Apply exponent rule: (ab)c=abc=(43​)31​⋅2
31​⋅2=32​
31​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=31⋅2​
Multiply the numbers: 1⋅2=2=32​
=(43​)32​
=2(43​)32​
3343​​​=3​643​​
3343​​​
Apply radical rule: nab​=na​nb​, assuming a≥0,b≥0=3​343​​​
343​​​:643​​
Apply radical rule: na​=an1​=((43​)31​)21​
Apply exponent rule: (ab)c=abc=(43​)31​⋅21​
31​⋅21​=61​
31​⋅21​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=3⋅21⋅1​
Multiply the numbers: 1⋅1=1=3⋅21​
Multiply the numbers: 3⋅2=6=61​
=(43​)61​
an1​=na​=643​​
=3​643​​
=2(43​)32​−3​643​​
2(43​)32​−3​643​​=0
True
The solutions areu=0,u=343​​
Substitute back u=cos(x)cos(x)=0,cos(x)=343​​
cos(x)=0,cos(x)=343​​
cos(x)=0:x=2π​+2πn,x=23π​+2πn
cos(x)=0
General solutions for cos(x)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=2π​+2πn,x=23π​+2πn
x=2π​+2πn,x=23π​+2πn
cos(x)=343​​:x=arccos(343​​)+2πn,x=2π−arccos(343​​)+2πn
cos(x)=343​​
Apply trig inverse properties
cos(x)=343​​
General solutions for cos(x)=343​​cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnx=arccos(343​​)+2πn,x=2π−arccos(343​​)+2πn
x=arccos(343​​)+2πn,x=2π−arccos(343​​)+2πn
Combine all the solutionsx=2π​+2πn,x=23π​+2πn,x=arccos(343​​)+2πn,x=2π−arccos(343​​)+2πn
Show solutions in decimal formx=2π​+2πn,x=23π​+2πn,x=0.43097…+2πn,x=2π−0.43097…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(3x)=sin(5x)sin(3x)=sin(5x)2sin^2(3θ)+sin(3θ)-1=02sin2(3θ)+sin(3θ)−1=04cos(θ)+sqrt(3)=2cos(θ)4cos(θ)+3​=2cos(θ)6cos^2(θ)-cos(θ)-1=06cos2(θ)−cos(θ)−1=0|cos(3x)|= 1/2∣cos(3x)∣=21​
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024