Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

0= pi/2-2arctan((pi/2-2-c)/(pi/2-c))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

0=2π​−2arctan(2π​−c2π​−2−c​)

Solution

NoSolutionforc∈R
Solution steps
0=2π​−2arctan(2π​−c2π​−2−c​)
Switch sides2π​−2arctan(2π​−c2π​−2−c​)=0
Move 2π​to the right side
2π​−2arctan(2π​−c2π​−2−c​)=0
Subtract 2π​ from both sides2π​−2arctan(2π​−c2π​−2−c​)−2π​=0−2π​
Simplify−2arctan(2π​−c2π​−2−c​)=−2π​
−2arctan(2π​−c2π​−2−c​)=−2π​
Divide both sides by −2
−2arctan(2π​−c2π​−2−c​)=−2π​
Divide both sides by −2−2−2arctan(2π​−c2π​−2−c​)​=−2−2π​​
Simplify
−2−2arctan(2π​−c2π​−2−c​)​=−2−2π​​
Simplify −2−2arctan(2π​−c2π​−2−c​)​:arctan(2π​−c2π​−2−c​)
−2−2arctan(2π​−c2π​−2−c​)​
Apply the fraction rule: −b−a​=ba​=22arctan(2π​−c2π​−2−c​)​
Divide the numbers: 22​=1=arctan(2π​−c2π​−2−c​)
Simplify −2−2π​​:4π​
−2−2π​​
Apply the fraction rule: −b−a​=ba​=22π​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅2π​
Multiply the numbers: 2⋅2=4=4π​
arctan(2π​−c2π​−2−c​)=4π​
arctan(2π​−c2π​−2−c​)=4π​
arctan(2π​−c2π​−2−c​)=4π​
Apply trig inverse properties
arctan(2π​−c2π​−2−c​)=4π​
arctan(x)=a⇒x=tan(a)2π​−c2π​−2−c​=tan(4π​)
tan(4π​)=1
tan(4π​)
Use the following trivial identity:tan(4π​)=1
tan(4π​)
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
=1
=1
2π​−c2π​−2−c​=1
2π​−c2π​−2−c​=1
Solve 2π​−c2π​−2−c​=1:No Solution for c∈R
2π​−c2π​−2−c​=1
Simplify 2π​−c2π​−2−c​:π−2cπ−4−2c​
2π​−c2π​−2−c​
Join 2π​−c:2π−2c​
2π​−c
Convert element to fraction: c=2c2​=2π​−2c⋅2​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2π−c⋅2​
=2π−2c​2π​−2−c​
Join 2π​−2−c:2π−4−2c​
2π​−2−c
Convert element to fraction: 2=22⋅2​,c=2c2​=2π​−22⋅2​−2c⋅2​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2π−2⋅2−c⋅2​
Multiply the numbers: 2⋅2=4=2π−4−2c​
=2π−2c​2π−4−2c​​
Divide fractions: dc​ba​​=b⋅ca⋅d​=2(π−c⋅2)(π−4−c⋅2)⋅2​
Cancel the common factor: 2=π−c⋅2π−4−c⋅2​
π−2cπ−4−2c​=1
Multiply both sides by π−2c
π−2cπ−4−2c​=1
Multiply both sides by π−2cπ−2cπ−4−2c​(π−2c)=1⋅(π−2c)
Simplify
π−2cπ−4−2c​(π−2c)=1⋅(π−2c)
Simplify π−2cπ−4−2c​(π−2c):π−4−2c
π−2cπ−4−2c​(π−2c)
Multiply fractions: a⋅cb​=ca⋅b​=π−2c(π−4−2c)(π−2c)​
Cancel the common factor: π−2c=π−4−2c
Simplify 1⋅(π−2c):π−2c
1⋅(π−2c)
Multiply: 1⋅(π−2c)=(π−2c)=(π−2c)
Remove parentheses: (a)=a=π−2c
π−4−2c=π−2c
π−4−2c=π−2c
π−4−2c=π−2c
Solve π−4−2c=π−2c:No Solution
π−4−2c=π−2c
Subtract π−2c from both sidesπ−4−2c−(π−2c)=π−2c−(π−2c)
Simplify−4=0
The sides are not equalNoSolution
NoSolutionforc∈R
NoSolutionforc∈R

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

2sin(2x+10)-sqrt(3)=02sin(2x+10)−3​=0cos(θ)=(13)/(sqrt(6)*\sqrt{86)}cos(θ)=6​⋅86​13​(1+tan(x))/(1+cot(x))=21+cot(x)1+tan(x)​=2tan(x)+1= 1/(sqrt(3))+1/(sqrt(3))cot(x)tan(x)+1=3​1​+3​1​cot(x)sin(8x)=1sin(8x)=1

Frequently Asked Questions (FAQ)

  • What is the general solution for 0= pi/2-2arctan((pi/2-2-c)/(pi/2-c)) ?

    The general solution for 0= pi/2-2arctan((pi/2-2-c)/(pi/2-c)) is No Solution for c\in\mathbb{R}
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024