Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

solvefor x,sqrt(1+sin^3(xy^2))=y

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

solve for x,1+sin3(xy2)​=y

Solution

x=y2arcsin(3y2−1​)​+y22πn​,x=y2π​+y2arcsin(−3y2−1​)​+y22πn​
+1
Radians
x=y2arcsin(3y2−1​)​+y22π​n,x=y2π​+y2arcsin(−3y2−1​)​+y22π​n
Solution steps
1+sin3(xy2)​=y
Square both sides:1+sin3(xy2)=y2
1+sin3(xy2)​=y
(1+sin3(xy2)​)2=y2
Expand (1+sin3(xy2)​)2:1+sin3(xy2)
(1+sin3(xy2)​)2
Apply radical rule: a​=a21​=((1+sin3(xy2))21​)2
Apply exponent rule: (ab)c=abc=(1+sin3(xy2))21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=1+sin3(xy2)
1+sin3(xy2)=y2
1+sin3(xy2)=y2
Solve 1+sin3(xy2)=y2:sin(xy2)=3y2−1​
1+sin3(xy2)=y2
Move 1to the right side
1+sin3(xy2)=y2
Subtract 1 from both sides1+sin3(xy2)−1=y2−1
Simplifysin3(xy2)=y2−1
sin3(xy2)=y2−1
For xn=f(a), n is odd, the solution is x=nf(a)​
sin(xy2)=3y2−1​
sin(xy2)=3y2−1​
Verify Solutions:sin(xy2)=3y2−1​{y≥0}
Check the solutions by plugging them into 1+sin3(xy2)​=y
Remove the ones that don't agree with the equation.
Plugsin(xy2)=3y2−1​:1+(3y2−1​)3​=y⇒y≥0
1+(3y2−1​)3​=y
Square both sides:y2=y2
1+(3y2−1​)3​=y
(1+(3y2−1​)3​)2=y2
Expand (1+(3y2−1​)3​)2:y2
(1+(3y2−1​)3​)2
Apply radical rule: a​=a21​=((1+(3y2−1​)3)21​)2
Apply exponent rule: (ab)c=abc=(1+(3y2−1​)3)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=1+(3y2−1​)3
Expand 1+(3y2−1​)3:y2
1+(3y2−1​)3
(3y2−1​)3=y2−1
(3y2−1​)3
Apply radical rule: na​=an1​=((y2−1)31​)3
Apply exponent rule: (ab)c=abc=(y2−1)31​⋅3
31​⋅3=1
31​⋅3
Multiply fractions: a⋅cb​=ca⋅b​=31⋅3​
Cancel the common factor: 3=1
=y2−1
=1+y2−1
Group like terms=y2+1−1
1−1=0=y2
=y2
y2=y2
y2=y2
Both sides are equalTrueforally
Verify Solutions:y<0False,y=0True,y>0True
1+(3y2−1​)3​=y
Combine domain interval with solution interval:Trueforally
Find the function intervals:y<0,y=0,y>0
1+(3y2−1​)3​=y
Find the even roots arguments zeroes:
Solve 1+3y2−1​3=0:y=0
1+(3y2−1​)3=0
Factor 1+(3y2−1​)3:(3y2−1​+1)((y2−1)32​−3y2−1​+1)
1+(3y2−1​)3
Rewrite 1 as 13=(3y2−1​)3+13
Apply Sum of Cubes Formula: x3+y3=(x+y)(x2−xy+y2)(3y2−1​)3+13=(3y2−1​+1)((3y2−1​)2−3y2−1​+1)=(3y2−1​+1)((3y2−1​)2−3y2−1​+1)
(3y2−1​)2=(y2−1)32​
(3y2−1​)2
Apply radical rule: na​=an1​=((y2−1)31​)2
Apply exponent rule: (ab)c=abc=(y2−1)31​⋅2
31​⋅2=32​
31​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=31⋅2​
Multiply the numbers: 1⋅2=2=32​
=(y2−1)32​
=(3y2−1​+1)((y2−1)32​−3y2−1​+1)
(3y2−1​+1)((y2−1)32​−3y2−1​+1)=0
Using the Zero Factor Principle: If ab=0then a=0or b=03y2−1​+1=0or(y2−1)32​−3y2−1​+1=0
Solve 3y2−1​+1=0:y=0
3y2−1​+1=0
Move 1to the right side
3y2−1​+1=0
Subtract 1 from both sides3y2−1​+1−1=0−1
Simplify3y2−1​=−1
3y2−1​=−1
Take both sides of the equation to the power of 3:y2−1=−1
3y2−1​=−1
(3y2−1​)3=(−1)3
Expand (3y2−1​)3:y2−1
(3y2−1​)3
Apply radical rule: na​=an1​=((y2−1)31​)3
Apply exponent rule: (ab)c=abc=(y2−1)31​⋅3
31​⋅3=1
31​⋅3
Multiply fractions: a⋅cb​=ca⋅b​=31⋅3​
Cancel the common factor: 3=1
=y2−1
Expand (−1)3:−1
(−1)3
Apply exponent rule: (−a)n=−an,if n is odd(−1)3=−13=−13
Apply rule 1a=1=−1
y2−1=−1
y2−1=−1
Solve y2−1=−1:y=0
y2−1=−1
Move 1to the right side
y2−1=−1
Add 1 to both sidesy2−1+1=−1+1
Simplifyy2=0
y2=0
Apply rule xn=0⇒x=0
y=0
y=0
Verify Solutions:y=0True
Check the solutions by plugging them into 3y2−1​+1=0
Remove the ones that don't agree with the equation.
Plug in y=0:True
302−1​+1=0
302−1​+1=0
302−1​+1
Apply rule 0a=002=0=30−1​+1
30−1​=−1
30−1​
Subtract the numbers: 0−1=−1=3−1​
n−1​=−1,if n is odd3−1​=−1=−1
=−1+1
Add/Subtract the numbers: −1+1=0=0
0=0
True
The solution isy=0
Solve (y2−1)32​−3y2−1​+1=0:No Solution for y∈R
(y2−1)32​−3y2−1​+1=0
Use the following exponent property:amn​=(ma​)n(y2−1)32​=(3y2−1​)2(3y2−1​)2−3y2−1​+1=0
Rewrite the equation with 3y2−1​=uu2−u+1=0
Solve u2−u+1=0:No Solution for u∈R
u2−u+1=0
Discriminant u2−u+1=0:−3
u2−u+1=0
For a quadratic equation of the form ax2+bx+c=0 the discriminant is b2−4acFor a=1,b=−1,c=1:(−1)2−4⋅1⋅1(−1)2−4⋅1⋅1
Expand (−1)2−4⋅1⋅1:−3
(−1)2−4⋅1⋅1
(−1)2=1
(−1)2
Apply exponent rule: (−a)n=an,if n is even(−1)2=12=12
Apply rule 1a=1=1
4⋅1⋅1=4
4⋅1⋅1
Multiply the numbers: 4⋅1⋅1=4=4
=1−4
Subtract the numbers: 1−4=−3=−3
−3
Discriminant cannot be negative for u∈R
The solution isNoSolutionforu∈R
NoSolutionfory∈R
y=0
Verify Solutions:y=0True
Check the solutions by plugging them into 1+3y2−1​3=0
Remove the ones that don't agree with the equation.
Plug in y=0:True
1+(302−1​)3=0
1+(302−1​)3=0
1+(302−1​)3
Apply rule 0a=002=0=1+(30−1​)3
(30−1​)3=−1
(30−1​)3
30−1​=−1
30−1​
Subtract the numbers: 0−1=−1=3−1​
n−1​=−1,if n is odd3−1​=−1=−1
=(−1)3
Apply exponent rule: (−a)n=−an,if n is odd(−1)3=−13=−13
Apply rule 1a=1=−1
=1−1
Subtract the numbers: 1−1=0=0
0=0
True
The solution isy=0
y=0
The intervals are defined around the zeroes:y<0,y=0,y>0
Combine intervals with domainy<0,y=0,y>0
Check the solutions by plugging them into 1+3y2−1​3​=y
Remove the ones that don't agree with the equation.
Plugy<0:1+3y2−1​3​=y⇒False
The solution isy≥0
The solution issin(xy2)=3y2−1​{y≥0}
Apply trig inverse properties
sin(xy2)=3y2−1​
General solutions for sin(xy2)=3y2−1​sin(x)=a⇒x=arcsin(a)+2πn,x=π+arcsin(a)+2πnxy2=arcsin(3y2−1​)+2πn,xy2=π+arcsin(−3y2−1​)+2πn
xy2=arcsin(3y2−1​)+2πn,xy2=π+arcsin(−3y2−1​)+2πn
Solve xy2=arcsin(3y2−1​)+2πn:x=y2arcsin(3y2−1​)​+y22πn​;y=0
xy2=arcsin(3y2−1​)+2πn
Divide both sides by y2;y=0
xy2=arcsin(3y2−1​)+2πn
Divide both sides by y2;y=0y2xy2​=y2arcsin(3y2−1​)​+y22πn​;y=0
Simplifyx=y2arcsin(3y2−1​)​+y22πn​;y=0
x=y2arcsin(3y2−1​)​+y22πn​;y=0
Solve xy2=π+arcsin(−3y2−1​)+2πn:x=y2π​+y2arcsin(−3y2−1​)​+y22πn​;y=0
xy2=π+arcsin(−3y2−1​)+2πn
Divide both sides by y2;y=0
xy2=π+arcsin(−3y2−1​)+2πn
Divide both sides by y2;y=0y2xy2​=y2π​+y2arcsin(−3y2−1​)​+y22πn​;y=0
Simplifyx=y2π​+y2arcsin(−3y2−1​)​+y22πn​;y=0
x=y2π​+y2arcsin(−3y2−1​)​+y22πn​;y=0
x=y2arcsin(3y2−1​)​+y22πn​,x=y2π​+y2arcsin(−3y2−1​)​+y22πn​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin((2x)/3)-1=0sin(32x​)−1=04sin^2(x)+1=44sin2(x)+1=4-sin^2(x)=-3+3sin^2(x)−sin2(x)=−3+3sin2(x)cos(3x)=0.5cos(3x)=0.55cos^2(x)+cos(x)=05cos2(x)+cos(x)=0
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024