Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2sin(pi/4+x)*sin(pi/4-x)+sin^2(x)=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2sin(4π​+x)⋅sin(4π​−x)+sin2(x)=0

Solution

x=2π​+2πn,x=23π​+2πn
+1
Degrees
x=90∘+360∘n,x=270∘+360∘n
Solution steps
2sin(4π​+x)sin(4π​−x)+sin2(x)=0
Rewrite using trig identities
2sin(4π​+x)sin(4π​−x)+sin2(x)=0
Rewrite using trig identities
sin(4π​−x)
Use the Angle Difference identity: sin(s−t)=sin(s)cos(t)−cos(s)sin(t)=sin(4π​)cos(x)−cos(4π​)sin(x)
Simplify sin(4π​)cos(x)−cos(4π​)sin(x):22​cos(x)−2​sin(x)​
sin(4π​)cos(x)−cos(4π​)sin(x)
sin(4π​)cos(x)=22​cos(x)​
sin(4π​)cos(x)
Simplify sin(4π​):22​​
sin(4π​)
Use the following trivial identity:sin(4π​)=22​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=22​​
=22​​cos(x)
Multiply fractions: a⋅cb​=ca⋅b​=22​cos(x)​
cos(4π​)sin(x)=22​sin(x)​
cos(4π​)sin(x)
Simplify cos(4π​):22​​
cos(4π​)
Use the following trivial identity:cos(4π​)=22​​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=22​​
=22​​sin(x)
Multiply fractions: a⋅cb​=ca⋅b​=22​sin(x)​
=22​cos(x)​−22​sin(x)​
Apply rule ca​±cb​=ca±b​=22​cos(x)−2​sin(x)​
=22​cos(x)−2​sin(x)​
Use the Angle Sum identity: sin(s+t)=sin(s)cos(t)+cos(s)sin(t)=sin(4π​)cos(x)+cos(4π​)sin(x)
Simplify sin(4π​)cos(x)+cos(4π​)sin(x):22​cos(x)+2​sin(x)​
sin(4π​)cos(x)+cos(4π​)sin(x)
sin(4π​)cos(x)=22​cos(x)​
sin(4π​)cos(x)
Simplify sin(4π​):22​​
sin(4π​)
Use the following trivial identity:sin(4π​)=22​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=22​​
=22​​cos(x)
Multiply fractions: a⋅cb​=ca⋅b​=22​cos(x)​
cos(4π​)sin(x)=22​sin(x)​
cos(4π​)sin(x)
Simplify cos(4π​):22​​
cos(4π​)
Use the following trivial identity:cos(4π​)=22​​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=22​​
=22​​sin(x)
Multiply fractions: a⋅cb​=ca⋅b​=22​sin(x)​
=22​cos(x)​+22​sin(x)​
Apply rule ca​±cb​=ca±b​=22​cos(x)+2​sin(x)​
=22​cos(x)+2​sin(x)​
2⋅22​cos(x)+2​sin(x)​⋅22​cos(x)−2​sin(x)​+sin2(x)=0
Simplify 2⋅22​cos(x)+2​sin(x)​⋅22​cos(x)−2​sin(x)​+sin2(x):cos2(x)
2⋅22​cos(x)+2​sin(x)​⋅22​cos(x)−2​sin(x)​+sin2(x)
2⋅22​cos(x)+2​sin(x)​⋅22​cos(x)−2​sin(x)​=(cos(x)+sin(x))(cos(x)−sin(x))
2⋅22​cos(x)+2​sin(x)​⋅22​cos(x)−2​sin(x)​
Multiply fractions: a⋅cb​⋅ed​=c⋅ea⋅b⋅d​=2⋅2(2​cos(x)+2​sin(x))(2​cos(x)−2​sin(x))⋅2​
Cancel the common factor: 2=2(2​cos(x)+2​sin(x))(2​cos(x)−2​sin(x))​
Factor (2​cos(x)+2​sin(x))(2​cos(x)−2​sin(x)):2(cos(x)+sin(x))(cos(x)−sin(x))
(2​cos(x)+2​sin(x))(2​cos(x)−2​sin(x))
Factor 2​cos(x)+2​sin(x):2​(cos(x)+sin(x))
2​cos(x)+2​sin(x)
Factor out common term 2​=2​(cos(x)+sin(x))
=2​(cos(x)+sin(x))(2​cos(x)−2​sin(x))
Factor 2​cos(x)−2​sin(x):2​(cos(x)−sin(x))
2​cos(x)−2​sin(x)
Factor out common term 2​=2​(cos(x)−sin(x))
=2​(cos(x)+sin(x))2​(cos(x)−sin(x))
Refine=2(cos(x)+sin(x))(cos(x)−sin(x))
=22(cos(x)+sin(x))(cos(x)−sin(x))​
Divide the numbers: 22​=1=(cos(x)+sin(x))(cos(x)−sin(x))
=(cos(x)+sin(x))(cos(x)−sin(x))+sin2(x)
Expand (cos(x)+sin(x))(cos(x)−sin(x)):cos2(x)−sin2(x)
(cos(x)+sin(x))(cos(x)−sin(x))
Apply Difference of Two Squares Formula: (a+b)(a−b)=a2−b2a=cos(x),b=sin(x)=cos2(x)−sin2(x)
=cos2(x)−sin2(x)+sin2(x)
Add similar elements: −sin2(x)+sin2(x)=0=cos2(x)
cos2(x)=0
cos2(x)=0
Apply rule xn=0⇒x=0
cos(x)=0
General solutions for cos(x)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=2π​+2πn,x=23π​+2πn
x=2π​+2πn,x=23π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

(2sin(x)-1)(cos(x)+1)=0(2sin(x)−1)(cos(x)+1)=07sin^2(x)-6=-3sin^2(x)7sin2(x)−6=−3sin2(x)tan(b)=4tan(b)=41sin(30)=1.5sin(x)1sin(30∘)=1.5sin(x)3-3sin(t)=3sqrt(3)cos(t)3−3sin(t)=33​cos(t)

Frequently Asked Questions (FAQ)

  • What is the general solution for 2sin(pi/4+x)*sin(pi/4-x)+sin^2(x)=0 ?

    The general solution for 2sin(pi/4+x)*sin(pi/4-x)+sin^2(x)=0 is x= pi/2+2pin,x=(3pi)/2+2pin
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024