Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

10sec(2x)+5tan(2x)-15=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

10sec(2x)+5tan(2x)−15=0

Solution

x=20.56432…​+πn,x=−21.20782…​+πn
+1
Degrees
x=16.16676…∘+180∘n,x=−34.60171…∘+180∘n
Solution steps
10sec(2x)+5tan(2x)−15=0
Express with sin, cos10⋅cos(2x)1​+5⋅cos(2x)sin(2x)​−15=0
Simplify 10⋅cos(2x)1​+5⋅cos(2x)sin(2x)​−15:cos(2x)10+5sin(2x)−15cos(2x)​
10⋅cos(2x)1​+5⋅cos(2x)sin(2x)​−15
10⋅cos(2x)1​=cos(2x)10​
10⋅cos(2x)1​
Multiply fractions: a⋅cb​=ca⋅b​=cos(2x)1⋅10​
Multiply the numbers: 1⋅10=10=cos(2x)10​
5⋅cos(2x)sin(2x)​=cos(2x)5sin(2x)​
5⋅cos(2x)sin(2x)​
Multiply fractions: a⋅cb​=ca⋅b​=cos(2x)sin(2x)⋅5​
=cos(2x)10​+cos(2x)5sin(2x)​−15
Combine the fractions cos(2x)10​+cos(2x)5sin(2x)​:cos(2x)10+5sin(2x)​
Apply rule ca​±cb​=ca±b​=cos(2x)10+5sin(2x)​
=cos(2x)5sin(2x)+10​−15
Convert element to fraction: 15=cos(2x)15cos(2x)​=cos(2x)10+sin(2x)⋅5​−cos(2x)15cos(2x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(2x)10+sin(2x)⋅5−15cos(2x)​
cos(2x)10+5sin(2x)−15cos(2x)​=0
g(x)f(x)​=0⇒f(x)=010+5sin(2x)−15cos(2x)=0
Add 15cos(2x) to both sides10+5sin(2x)=15cos(2x)
Square both sides(10+5sin(2x))2=(15cos(2x))2
Subtract (15cos(2x))2 from both sides(10+5sin(2x))2−225cos2(2x)=0
Rewrite using trig identities
(10+5sin(2x))2−225cos2(2x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=(10+5sin(2x))2−225(1−sin2(2x))
Simplify (10+5sin(2x))2−225(1−sin2(2x)):250sin2(2x)+100sin(2x)−125
(10+5sin(2x))2−225(1−sin2(2x))
(10+5sin(2x))2:100+100sin(2x)+25sin2(2x)
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2a=10,b=5sin(2x)
=102+2⋅10⋅5sin(2x)+(5sin(2x))2
Simplify 102+2⋅10⋅5sin(2x)+(5sin(2x))2:100+100sin(2x)+25sin2(2x)
102+2⋅10⋅5sin(2x)+(5sin(2x))2
102=100
102
102=100=100
2⋅10⋅5sin(2x)=100sin(2x)
2⋅10⋅5sin(2x)
Multiply the numbers: 2⋅10⋅5=100=100sin(2x)
(5sin(2x))2=25sin2(2x)
(5sin(2x))2
Apply exponent rule: (a⋅b)n=anbn=52sin2(2x)
52=25=25sin2(2x)
=100+100sin(2x)+25sin2(2x)
=100+100sin(2x)+25sin2(2x)
=100+100sin(2x)+25sin2(2x)−225(1−sin2(2x))
Expand −225(1−sin2(2x)):−225+225sin2(2x)
−225(1−sin2(2x))
Apply the distributive law: a(b−c)=ab−aca=−225,b=1,c=sin2(2x)=−225⋅1−(−225)sin2(2x)
Apply minus-plus rules−(−a)=a=−225⋅1+225sin2(2x)
Multiply the numbers: 225⋅1=225=−225+225sin2(2x)
=100+100sin(2x)+25sin2(2x)−225+225sin2(2x)
Simplify 100+100sin(2x)+25sin2(2x)−225+225sin2(2x):250sin2(2x)+100sin(2x)−125
100+100sin(2x)+25sin2(2x)−225+225sin2(2x)
Group like terms=100sin(2x)+25sin2(2x)+225sin2(2x)+100−225
Add similar elements: 25sin2(2x)+225sin2(2x)=250sin2(2x)=100sin(2x)+250sin2(2x)+100−225
Add/Subtract the numbers: 100−225=−125=250sin2(2x)+100sin(2x)−125
=250sin2(2x)+100sin(2x)−125
=250sin2(2x)+100sin(2x)−125
−125+100sin(2x)+250sin2(2x)=0
Solve by substitution
−125+100sin(2x)+250sin2(2x)=0
Let: sin(2x)=u−125+100u+250u2=0
−125+100u+250u2=0:u=10−2+36​​,u=−102+36​​
−125+100u+250u2=0
Write in the standard form ax2+bx+c=0250u2+100u−125=0
Solve with the quadratic formula
250u2+100u−125=0
Quadratic Equation Formula:
For a=250,b=100,c=−125u1,2​=2⋅250−100±1002−4⋅250(−125)​​
u1,2​=2⋅250−100±1002−4⋅250(−125)​​
1002−4⋅250(−125)​=1506​
1002−4⋅250(−125)​
Apply rule −(−a)=a=1002+4⋅250⋅125​
Multiply the numbers: 4⋅250⋅125=125000=1002+125000​
1002=10000=10000+125000​
Add the numbers: 10000+125000=135000=135000​
Prime factorization of 135000:23⋅33⋅54
135000
=54⋅23⋅33​
Apply exponent rule: ab+c=ab⋅ac=54⋅22⋅32⋅2⋅3​
Apply radical rule: nab​=na​nb​=22​32​54​2⋅3​
Apply radical rule: nan​=a22​=2=232​54​2⋅3​
Apply radical rule: nan​=a32​=3=2⋅354​2⋅3​
Apply radical rule: nam​=anm​54​=524​=52=52⋅2⋅32⋅3​
Refine=1506​
u1,2​=2⋅250−100±1506​​
Separate the solutionsu1​=2⋅250−100+1506​​,u2​=2⋅250−100−1506​​
u=2⋅250−100+1506​​:10−2+36​​
2⋅250−100+1506​​
Multiply the numbers: 2⋅250=500=500−100+1506​​
Factor −100+1506​:50(−2+36​)
−100+1506​
Rewrite as=−50⋅2+50⋅36​
Factor out common term 50=50(−2+36​)
=50050(−2+36​)​
Cancel the common factor: 50=10−2+36​​
u=2⋅250−100−1506​​:−102+36​​
2⋅250−100−1506​​
Multiply the numbers: 2⋅250=500=500−100−1506​​
Factor −100−1506​:−50(2+36​)
−100−1506​
Rewrite as=−50⋅2−50⋅36​
Factor out common term 50=−50(2+36​)
=−50050(2+36​)​
Cancel the common factor: 50=−102+36​​
The solutions to the quadratic equation are:u=10−2+36​​,u=−102+36​​
Substitute back u=sin(2x)sin(2x)=10−2+36​​,sin(2x)=−102+36​​
sin(2x)=10−2+36​​,sin(2x)=−102+36​​
sin(2x)=10−2+36​​:x=2arcsin(10−2+36​​)​+πn,x=2π​−2arcsin(10−2+36​​)​+πn
sin(2x)=10−2+36​​
Apply trig inverse properties
sin(2x)=10−2+36​​
General solutions for sin(2x)=10−2+36​​sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πn2x=arcsin(10−2+36​​)+2πn,2x=π−arcsin(10−2+36​​)+2πn
2x=arcsin(10−2+36​​)+2πn,2x=π−arcsin(10−2+36​​)+2πn
Solve 2x=arcsin(10−2+36​​)+2πn:x=2arcsin(10−2+36​​)​+πn
2x=arcsin(10−2+36​​)+2πn
Divide both sides by 2
2x=arcsin(10−2+36​​)+2πn
Divide both sides by 222x​=2arcsin(10−2+36​​)​+22πn​
Simplifyx=2arcsin(10−2+36​​)​+πn
x=2arcsin(10−2+36​​)​+πn
Solve 2x=π−arcsin(10−2+36​​)+2πn:x=2π​−2arcsin(10−2+36​​)​+πn
2x=π−arcsin(10−2+36​​)+2πn
Divide both sides by 2
2x=π−arcsin(10−2+36​​)+2πn
Divide both sides by 222x​=2π​−2arcsin(10−2+36​​)​+22πn​
Simplifyx=2π​−2arcsin(10−2+36​​)​+πn
x=2π​−2arcsin(10−2+36​​)​+πn
x=2arcsin(10−2+36​​)​+πn,x=2π​−2arcsin(10−2+36​​)​+πn
sin(2x)=−102+36​​:x=−2arcsin(102+36​​)​+πn,x=2π​+2arcsin(102+36​​)​+πn
sin(2x)=−102+36​​
Apply trig inverse properties
sin(2x)=−102+36​​
General solutions for sin(2x)=−102+36​​sin(x)=−a⇒x=arcsin(−a)+2πn,x=π+arcsin(a)+2πn2x=arcsin(−102+36​​)+2πn,2x=π+arcsin(102+36​​)+2πn
2x=arcsin(−102+36​​)+2πn,2x=π+arcsin(102+36​​)+2πn
Solve 2x=arcsin(−102+36​​)+2πn:x=−2arcsin(102+36​​)​+πn
2x=arcsin(−102+36​​)+2πn
Simplify arcsin(−102+36​​)+2πn:−arcsin(102+36​​)+2πn
arcsin(−102+36​​)+2πn
Use the following property: arcsin(−x)=−arcsin(x)arcsin(−102+36​​)=−arcsin(102+36​​)=−arcsin(102+36​​)+2πn
2x=−arcsin(102+36​​)+2πn
Divide both sides by 2
2x=−arcsin(102+36​​)+2πn
Divide both sides by 222x​=−2arcsin(102+36​​)​+22πn​
Simplifyx=−2arcsin(102+36​​)​+πn
x=−2arcsin(102+36​​)​+πn
Solve 2x=π+arcsin(102+36​​)+2πn:x=2π​+2arcsin(102+36​​)​+πn
2x=π+arcsin(102+36​​)+2πn
Divide both sides by 2
2x=π+arcsin(102+36​​)+2πn
Divide both sides by 222x​=2π​+2arcsin(102+36​​)​+22πn​
Simplifyx=2π​+2arcsin(102+36​​)​+πn
x=2π​+2arcsin(102+36​​)​+πn
x=−2arcsin(102+36​​)​+πn,x=2π​+2arcsin(102+36​​)​+πn
Combine all the solutionsx=2arcsin(10−2+36​​)​+πn,x=2π​−2arcsin(10−2+36​​)​+πn,x=−2arcsin(102+36​​)​+πn,x=2π​+2arcsin(102+36​​)​+πn
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into 10sec(2x)+5tan(2x)−15=0
Remove the ones that don't agree with the equation.
Check the solution 2arcsin(10−2+36​​)​+πn:True
2arcsin(10−2+36​​)​+πn
Plug in n=12arcsin(10−2+36​​)​+π1
For 10sec(2x)+5tan(2x)−15=0plug inx=2arcsin(10−2+36​​)​+π110sec​2​2arcsin(10−2+36​​)​+π1​​+5tan​2​2arcsin(10−2+36​​)​+π1​​−15=0
Refine0=0
⇒True
Check the solution 2π​−2arcsin(10−2+36​​)​+πn:False
2π​−2arcsin(10−2+36​​)​+πn
Plug in n=12π​−2arcsin(10−2+36​​)​+π1
For 10sec(2x)+5tan(2x)−15=0plug inx=2π​−2arcsin(10−2+36​​)​+π110sec​2​2π​−2arcsin(10−2+36​​)​+π1​​+5tan​2​2π​−2arcsin(10−2+36​​)​+π1​​−15=0
Refine−30=0
⇒False
Check the solution −2arcsin(102+36​​)​+πn:True
−2arcsin(102+36​​)​+πn
Plug in n=1−2arcsin(102+36​​)​+π1
For 10sec(2x)+5tan(2x)−15=0plug inx=−2arcsin(102+36​​)​+π110sec​2​−2arcsin(102+36​​)​+π1​​+5tan​2​−2arcsin(102+36​​)​+π1​​−15=0
Refine0=0
⇒True
Check the solution 2π​+2arcsin(102+36​​)​+πn:False
2π​+2arcsin(102+36​​)​+πn
Plug in n=12π​+2arcsin(102+36​​)​+π1
For 10sec(2x)+5tan(2x)−15=0plug inx=2π​+2arcsin(102+36​​)​+π110sec​2​2π​+2arcsin(102+36​​)​+π1​​+5tan​2​2π​+2arcsin(102+36​​)​+π1​​−15=0
Refine−30=0
⇒False
x=2arcsin(10−2+36​​)​+πn,x=−2arcsin(102+36​​)​+πn
Show solutions in decimal formx=20.56432…​+πn,x=−21.20782…​+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

-tan(x)+sec(x)=1,0<= x<= 2pi−tan(x)+sec(x)=1,0≤x≤2π3tan(x/9)-sqrt(3)=03tan(9x​)−3​=0solvefor x,tan(x)= 1/(sqrt(3))solveforx,tan(x)=3​1​cos(x)= 9/12cos(x)=129​2tan^2(x)+1=sec^2(x)+sin^2(x)+cos^2(x)2tan2(x)+1=sec2(x)+sin2(x)+cos2(x)

Frequently Asked Questions (FAQ)

  • What is the general solution for 10sec(2x)+5tan(2x)-15=0 ?

    The general solution for 10sec(2x)+5tan(2x)-15=0 is x=(0.56432…)/2+pin,x=-(1.20782…)/2+pin
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024