Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2sin(e^{t/4})+1=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2sin(e4t​)+1=0

Solution

t=4ln(67π​+2πn),t=4ln(611π​+2πn)
+1
Degrees
t=0∘+526.52744…∘n,t=0∘+570.31408…∘n
Solution steps
2sin(e4t​)+1=0
Move 1to the right side
2sin(e4t​)+1=0
Subtract 1 from both sides2sin(e4t​)+1−1=0−1
Simplify2sin(e4t​)=−1
2sin(e4t​)=−1
Divide both sides by 2
2sin(e4t​)=−1
Divide both sides by 222sin(e4t​)​=2−1​
Simplifysin(e4t​)=−21​
sin(e4t​)=−21​
General solutions for sin(e4t​)=−21​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
e4t​=67π​+2πn,e4t​=611π​+2πn
e4t​=67π​+2πn,e4t​=611π​+2πn
Solve e4t​=67π​+2πn:t=4ln(67π​+2πn)
e4t​=67π​+2πn
Multiply both sides by 6e4t​⋅6=67π​⋅6+2πn⋅6
Simplifye4t​⋅6=7π+12πn
Divide both sides by 6
e4t​⋅6=7π+12πn
Divide both sides by 66e4t​⋅6​=67π​+612πn​
Simplifye4t​=67π​+2πn
e4t​=67π​+2πn
Apply exponent rules
e4t​=67π​+2πn
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(e4t​)=ln(67π​+2πn)
Apply log rule: ln(ea)=aln(e4t​)=4t​4t​=ln(67π​+2πn)
4t​=ln(67π​+2πn)
Solve 4t​=ln(67π​+2πn):t=4ln(67π​+2πn)
4t​=ln(67π​+2πn)
Multiply both sides by 4
4t​=ln(67π​+2πn)
Multiply both sides by 444t​=4ln(67π​+2πn)
Simplifyt=4ln(67π​+2πn)
t=4ln(67π​+2πn)
t=4ln(67π​+2πn)
Solve e4t​=611π​+2πn:t=4ln(611π​+2πn)
e4t​=611π​+2πn
Multiply both sides by 6e4t​⋅6=611π​⋅6+2πn⋅6
Simplifye4t​⋅6=11π+12πn
Divide both sides by 6
e4t​⋅6=11π+12πn
Divide both sides by 66e4t​⋅6​=611π​+612πn​
Simplifye4t​=611π​+2πn
e4t​=611π​+2πn
Apply exponent rules
e4t​=611π​+2πn
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(e4t​)=ln(611π​+2πn)
Apply log rule: ln(ea)=aln(e4t​)=4t​4t​=ln(611π​+2πn)
4t​=ln(611π​+2πn)
Solve 4t​=ln(611π​+2πn):t=4ln(611π​+2πn)
4t​=ln(611π​+2πn)
Multiply both sides by 4
4t​=ln(611π​+2πn)
Multiply both sides by 444t​=4ln(611π​+2πn)
Simplifyt=4ln(611π​+2πn)
t=4ln(611π​+2πn)
t=4ln(611π​+2πn)
t=4ln(67π​+2πn),t=4ln(611π​+2πn)

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

3sin^2(x)-2sin(x)=03sin2(x)−2sin(x)=0sin(u)=-2/5sin(u)=−52​2sin(3x)cos(2x)-cos(2x)=02sin(3x)cos(2x)−cos(2x)=04sin^2(x)+2sin(x)-2=04sin2(x)+2sin(x)−2=0solvefor x,cos(xy)=0solveforx,cos(xy)=0

Frequently Asked Questions (FAQ)

  • What is the general solution for 2sin(e^{t/4})+1=0 ?

    The general solution for 2sin(e^{t/4})+1=0 is t=4ln((7pi)/6+2pin),t=4ln((11pi)/6+2pin)
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024