Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos(3x)=-sin(x+pi/6)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos(3x)=−sin(x+6π​)

Solution

x=3π(3n+1)​,x=−6π(3n+1)​
+1
Degrees
x=60∘+180∘n,x=−30∘−90∘n
Solution steps
cos(3x)=−sin(x+6π​)
Rewrite using trig identities
cos(3x)=−sin(x+6π​)
Use the following identity: −sin(x)=sin(−x)cos(3x)=sin(−(x+6π​))
Use the following identity: cos(x)=sin(2π​−x)cos(3x)=sin(2π​−3x)
cos(3x)=sin(2π​−3x)
Apply trig inverse properties
cos(3x)=sin(2π​−3x)
sin(x)=sin(y)⇒x=y+2πn,x=π−y+2πn−(x+6π​)=2π​−3x+2πn,−(x+6π​)=π−(2π​−3x)+2πn
−(x+6π​)=2π​−3x+2πn,−(x+6π​)=π−(2π​−3x)+2πn
−(x+6π​)=2π​−3x+2πn:x=3π(3n+1)​
−(x+6π​)=2π​−3x+2πn
Expand −(x+6π​):−x−6π​
−(x+6π​)
Distribute parentheses=−(x)−(6π​)
Apply minus-plus rules+(−a)=−a=−x−6π​
−x−6π​=2π​−3x+2πn
Move 6π​to the right side
−x−6π​=2π​−3x+2πn
Add 6π​ to both sides−x−6π​+6π​=2π​−3x+2πn+6π​
Simplify
−x−6π​+6π​=2π​−3x+2πn+6π​
Simplify −x−6π​+6π​:−x
−x−6π​+6π​
Add similar elements: −6π​+6π​=0
=−x
Simplify 2π​−3x+2πn+6π​:−3x+2πn+32π​
2π​−3x+2πn+6π​
Group like terms=−3x+2πn+2π​+6π​
Least Common Multiplier of 2,6:6
2,6
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 6:2⋅3
6
6divides by 26=3⋅2=2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3
Multiply each factor the greatest number of times it occurs in either 2 or 6=2⋅3
Multiply the numbers: 2⋅3=6=6
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 6
For 2π​:multiply the denominator and numerator by 32π​=2⋅3π3​=6π3​
=6π3​+6π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=6π3+π​
Add similar elements: 3π+π=4π=64π​
Cancel the common factor: 2=−3x+2πn+32π​
−x=−3x+2πn+32π​
−x=−3x+2πn+32π​
−x=−3x+2πn+32π​
Move 3xto the left side
−x=−3x+2πn+32π​
Add 3x to both sides−x+3x=−3x+2πn+32π​+3x
Simplify2x=2πn+32π​
2x=2πn+32π​
Divide both sides by 2
2x=2πn+32π​
Divide both sides by 222x​=22πn​+232π​​
Simplify
22x​=22πn​+232π​​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 22πn​+232π​​:3π(3n+1)​
22πn​+232π​​
Apply rule ca​±cb​=ca±b​=22πn+32π​​
Join 2πn+32π​:36πn+2π​
2πn+32π​
Convert element to fraction: 2πn=32πn3​=32πn⋅3​+32π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=32πn⋅3+2π​
Multiply the numbers: 2⋅3=6=36πn+2π​
=236πn+2π​​
Apply the fraction rule: acb​​=c⋅ab​=3⋅26πn+2π​
Multiply the numbers: 3⋅2=6=66πn+2π​
Factor 6πn+2π:2π(3n+1)
6πn+2π
Rewrite as=3⋅2πn+1⋅2π
Factor out common term 2π=2π(3n+1)
=62π(3n+1)​
Cancel the common factor: 2=3π(3n+1)​
x=3π(3n+1)​
x=3π(3n+1)​
x=3π(3n+1)​
−(x+6π​)=π−(2π​−3x)+2πn:x=−6π(3n+1)​
−(x+6π​)=π−(2π​−3x)+2πn
Expand −(x+6π​):−x−6π​
−(x+6π​)
Distribute parentheses=−(x)−(6π​)
Apply minus-plus rules+(−a)=−a=−x−6π​
Expand π−(2π​−3x)+2πn:π−2π​+3x+2πn
π−(2π​−3x)+2πn
−(2π​−3x):−2π​+3x
−(2π​−3x)
Distribute parentheses=−(2π​)−(−3x)
Apply minus-plus rules−(−a)=a,−(a)=−a=−2π​+3x
=π−2π​+3x+2πn
−x−6π​=π−2π​+3x+2πn
Move 6π​to the right side
−x−6π​=π−2π​+3x+2πn
Add 6π​ to both sides−x−6π​+6π​=π−2π​+3x+2πn+6π​
Simplify
−x−6π​+6π​=π−2π​+3x+2πn+6π​
Simplify −x−6π​+6π​:−x
−x−6π​+6π​
Add similar elements: −6π​+6π​=0
=−x
Simplify π−2π​+3x+2πn+6π​:3x+π+2πn−3π​
π−2π​+3x+2πn+6π​
Group like terms=3x+π+2πn−2π​+6π​
Least Common Multiplier of 2,6:6
2,6
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 6:2⋅3
6
6divides by 26=3⋅2=2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3
Multiply each factor the greatest number of times it occurs in either 2 or 6=2⋅3
Multiply the numbers: 2⋅3=6=6
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 6
For 2π​:multiply the denominator and numerator by 32π​=2⋅3π3​=6π3​
=−6π3​+6π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=6−π3+π​
Add similar elements: −3π+π=−2π=6−2π​
Apply the fraction rule: b−a​=−ba​=−62π​
Cancel the common factor: 2=3x+π+2πn−3π​
−x=3x+π+2πn−3π​
−x=3x+π+2πn−3π​
−x=3x+π+2πn−3π​
Move 3xto the left side
−x=3x+π+2πn−3π​
Subtract 3x from both sides−x−3x=3x+π+2πn−3π​−3x
Simplify−4x=π+2πn−3π​
−4x=π+2πn−3π​
Divide both sides by −4
−4x=π+2πn−3π​
Divide both sides by −4−4−4x​=−4π​+−42πn​−−43π​​
Simplify
−4−4x​=−4π​+−42πn​−−43π​​
Simplify −4−4x​:x
−4−4x​
Apply the fraction rule: −b−a​=ba​=44x​
Divide the numbers: 44​=1=x
Simplify −4π​+−42πn​−−43π​​:−6π(3n+1)​
−4π​+−42πn​−−43π​​
Apply rule ca​±cb​=ca±b​=−4π+2πn−3π​​
Apply the fraction rule: −ba​=−ba​=−4π+2πn−3π​​
Join π+2πn−3π​:32π+6πn​
π+2πn−3π​
Convert element to fraction: π=3π3​,2πn=32πn3​=3π3​+32πn⋅3​−3π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=3π3+2πn⋅3−π​
π3+2πn⋅3−π=2π+6πn
π3+2πn⋅3−π
Add similar elements: 3π−π=2π=2π+2⋅3πn
Multiply the numbers: 2⋅3=6=2π+6πn
=32π+6πn​
=−432π+6πn​​
Simplify 432π+6πn​​:122π+6πn​
432π+6πn​​
Apply the fraction rule: acb​​=c⋅ab​=3⋅42π+6πn​
Multiply the numbers: 3⋅4=12=122π+6πn​
=−122π+6πn​
Cancel 122π+6πn​:6π(3n+1)​
122π+6πn​
Factor 2π+6πn:2π(1+3n)
2π+6πn
Rewrite as=1⋅2π+3⋅2πn
Factor out common term 2π=2π(1+3n)
=122π(1+3n)​
Cancel the common factor: 2=6π(3n+1)​
=−6π(3n+1)​
x=−6π(3n+1)​
x=−6π(3n+1)​
x=−6π(3n+1)​
x=3π(3n+1)​,x=−6π(3n+1)​
x=3π(3n+1)​,x=−6π(3n+1)​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(θ)= 7/10sin(θ)=107​tan(5x)=1tan(5x)=1sec(5x)=2sec(5x)=25sin(θ)-1=3sin(θ)5sin(θ)−1=3sin(θ)2cos^2(w)-cos(w)-1=02cos2(w)−cos(w)−1=0

Frequently Asked Questions (FAQ)

  • What is the general solution for cos(3x)=-sin(x+pi/6) ?

    The general solution for cos(3x)=-sin(x+pi/6) is x=(pi(3n+1))/3 ,x=-(pi(3n+1))/6
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024