Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(1-sin(x))/(cos(x))=(cos(x))/(1-sin(x))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos(x)1−sin(x)​=1−sin(x)cos(x)​

Solution

x=2πn,x=π+2πn
+1
Degrees
x=0∘+360∘n,x=180∘+360∘n
Solution steps
cos(x)1−sin(x)​=1−sin(x)cos(x)​
Subtract 1−sin(x)cos(x)​ from both sidescos(x)1−sin(x)​−1−sin(x)cos(x)​=0
Simplify cos(x)1−sin(x)​−1−sin(x)cos(x)​:cos(x)(−sin(x)+1)(1−sin(x))2−cos2(x)​
cos(x)1−sin(x)​−1−sin(x)cos(x)​
Least Common Multiplier of cos(x),1−sin(x):cos(x)(−sin(x)+1)
cos(x),1−sin(x)
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in cos(x) or 1−sin(x)=cos(x)(−sin(x)+1)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM cos(x)(−sin(x)+1)
For cos(x)1−sin(x)​:multiply the denominator and numerator by −sin(x)+1cos(x)1−sin(x)​=cos(x)(−sin(x)+1)(1−sin(x))(−sin(x)+1)​=cos(x)(−sin(x)+1)(1−sin(x))2​
For 1−sin(x)cos(x)​:multiply the denominator and numerator by cos(x)1−sin(x)cos(x)​=(1−sin(x))cos(x)cos(x)cos(x)​=cos(x)(−sin(x)+1)cos2(x)​
=cos(x)(−sin(x)+1)(1−sin(x))2​−cos(x)(−sin(x)+1)cos2(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(x)(−sin(x)+1)(1−sin(x))2−cos2(x)​
cos(x)(−sin(x)+1)(1−sin(x))2−cos2(x)​=0
g(x)f(x)​=0⇒f(x)=0(1−sin(x))2−cos2(x)=0
Rewrite using trig identities
(1−sin(x))2−cos2(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=(1−sin(x))2−(1−sin2(x))
Simplify (1−sin(x))2−(1−sin2(x)):2sin2(x)−2sin(x)
(1−sin(x))2−(1−sin2(x))
(1−sin(x))2:1−2sin(x)+sin2(x)
Apply Perfect Square Formula: (a−b)2=a2−2ab+b2a=1,b=sin(x)
=12−2⋅1⋅sin(x)+sin2(x)
Simplify 12−2⋅1⋅sin(x)+sin2(x):1−2sin(x)+sin2(x)
12−2⋅1⋅sin(x)+sin2(x)
Apply rule 1a=112=1=1−2⋅1⋅sin(x)+sin2(x)
Multiply the numbers: 2⋅1=2=1−2sin(x)+sin2(x)
=1−2sin(x)+sin2(x)
=1−2sin(x)+sin2(x)−(1−sin2(x))
−(1−sin2(x)):−1+sin2(x)
−(1−sin2(x))
Distribute parentheses=−(1)−(−sin2(x))
Apply minus-plus rules−(−a)=a,−(a)=−a=−1+sin2(x)
=1−2sin(x)+sin2(x)−1+sin2(x)
Simplify 1−2sin(x)+sin2(x)−1+sin2(x):2sin2(x)−2sin(x)
1−2sin(x)+sin2(x)−1+sin2(x)
Group like terms=−2sin(x)+sin2(x)+sin2(x)+1−1
Add similar elements: sin2(x)+sin2(x)=2sin2(x)=−2sin(x)+2sin2(x)+1−1
1−1=0=2sin2(x)−2sin(x)
=2sin2(x)−2sin(x)
=2sin2(x)−2sin(x)
−2sin(x)+2sin2(x)=0
Solve by substitution
−2sin(x)+2sin2(x)=0
Let: sin(x)=u−2u+2u2=0
−2u+2u2=0:u=1,u=0
−2u+2u2=0
Write in the standard form ax2+bx+c=02u2−2u=0
Solve with the quadratic formula
2u2−2u=0
Quadratic Equation Formula:
For a=2,b=−2,c=0u1,2​=2⋅2−(−2)±(−2)2−4⋅2⋅0​​
u1,2​=2⋅2−(−2)±(−2)2−4⋅2⋅0​​
(−2)2−4⋅2⋅0​=2
(−2)2−4⋅2⋅0​
Apply exponent rule: (−a)n=an,if n is even(−2)2=22=22−4⋅2⋅0​
Apply rule 0⋅a=0=22−0​
22−0=22=22​
Apply radical rule: nan​=a, assuming a≥0=2
u1,2​=2⋅2−(−2)±2​
Separate the solutionsu1​=2⋅2−(−2)+2​,u2​=2⋅2−(−2)−2​
u=2⋅2−(−2)+2​:1
2⋅2−(−2)+2​
Apply rule −(−a)=a=2⋅22+2​
Add the numbers: 2+2=4=2⋅24​
Multiply the numbers: 2⋅2=4=44​
Apply rule aa​=1=1
u=2⋅2−(−2)−2​:0
2⋅2−(−2)−2​
Apply rule −(−a)=a=2⋅22−2​
Subtract the numbers: 2−2=0=2⋅20​
Multiply the numbers: 2⋅2=4=40​
Apply rule a0​=0,a=0=0
The solutions to the quadratic equation are:u=1,u=0
Substitute back u=sin(x)sin(x)=1,sin(x)=0
sin(x)=1,sin(x)=0
sin(x)=1:x=2π​+2πn
sin(x)=1
General solutions for sin(x)=1
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=2π​+2πn
x=2π​+2πn
sin(x)=0:x=2πn,x=π+2πn
sin(x)=0
General solutions for sin(x)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=0+2πn,x=π+2πn
x=0+2πn,x=π+2πn
Solve x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn,x=π+2πn
Combine all the solutionsx=2π​+2πn,x=2πn,x=π+2πn
Since the equation is undefined for:2π​+2πnx=2πn,x=π+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

5sec(x)+7=-35sec(x)+7=−3cos(2θ)+2cos(θ)=-1cos(2θ)+2cos(θ)=−1((tan(x))/1)^{-1}=(20)/(9.7)(1tan(x)​)−1=9.720​1-tan(x)=sec(x)1−tan(x)=sec(x)sec((3θ)/2)=-2,0<= θ<2pisec(23θ​)=−2,0≤θ<2π

Frequently Asked Questions (FAQ)

  • What is the general solution for (1-sin(x))/(cos(x))=(cos(x))/(1-sin(x)) ?

    The general solution for (1-sin(x))/(cos(x))=(cos(x))/(1-sin(x)) is x=2pin,x=pi+2pin
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024