Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

75=50cosh(x/(50))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

75=50cosh(50x​)

Solution

x=50ln(23+5​​)
+1
Degrees
x=2757.14066…∘
Solution steps
75=50cosh(50x​)
Switch sides50cosh(50x​)=75
Rewrite using trig identities
50cosh(50x​)=75
Use the Hyperbolic identity: cosh(x)=2ex+e−x​50⋅2e50x​+e−50x​​=75
50⋅2e50x​+e−50x​​=75
50⋅2e50x​+e−50x​​=75:x=50ln(23+5​​)
50⋅2e50x​+e−50x​​=75
Apply exponent rules
50⋅2e50x​+e−50x​​=75
Apply exponent rule: abc=(ab)ce50x​=(ex)0.02,e−50x​=(ex)−0.0250⋅2(ex)0.02+(ex)−0.02​=75
50⋅2(ex)0.02+(ex)−0.02​=75
Rewrite the equation with ex=u50⋅2(u)0.02+(u)−0.02​=75
Solve 50⋅2u0.02+u−0.02​=75:u=250(3+5​)50​,u=250(3−5​)50​
50⋅2u0.02+u−0.02​=75
Expand 50⋅2u0.02+u−0.02​:25u0.02+u0.0225​
50⋅2u0.02+u−0.02​
2u0.02+u−0.02​=2u0.02u0.04+1​
2u0.02+u−0.02​
Apply exponent rule: a−b=ab1​=2u0.02+u0.021​​
Join u0.02+u0.021​:u0.02u0.04+1​
u0.02+u0.021​
Convert element to fraction: u0.02=u0.02u0.02u0.02​=u0.02u0.02u0.02​+u0.021​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=u0.02u0.02u0.02+1​
u0.02u0.02+1=u0.04+1
u0.02u0.02+1
u0.02u0.02=u0.04
u0.02u0.02
Apply exponent rule: ab⋅ac=ab+cu0.02u0.02=u0.02+0.02=u0.02+0.02
Add the numbers: 0.02+0.02=0.04=u0.04
=u0.04+1
=u0.02u0.04+1​
=2u0.02u0.04+1​​
Apply the fraction rule: acb​​=c⋅ab​=u0.02⋅2u0.04+1​
=50⋅2u0.02u0.04+1​
Multiply fractions: a⋅cb​=ca⋅b​=u0.02⋅2(u0.04+1)⋅50​
Divide the numbers: 250​=25=u0.0225(u0.04+1)​
Expand 25(u0.04+1):25u0.04+25
25(u0.04+1)
Apply the distributive law: a(b+c)=ab+aca=25,b=u0.04,c=1=25u0.04+25⋅1
Multiply the numbers: 25⋅1=25=25u0.04+25
=u0.0225u0.04+25​
Apply the fraction rule: ca±b​=ca​±cb​u0.0225u0.04+25​=u0.0225u0.04​+u0.0225​=u0.0225u0.04​+u0.0225​
Cancel u0.0225u0.04​:25u0.02
u0.0225u0.04​
Cancel u0.0225u0.04​:25u0.02
u0.0225u0.04​
Apply exponent rule: xbxa​=xa−bu0.02u0.04​=u0.04−0.02=25u0.04−0.02
Subtract the numbers: 0.04−0.02=0.02=25u0.02
=25u0.02
=25u0.02+u0.0225​
25u0.02+u0.0225​=75
Rewrite the equation with u501​=v25v+v25​=75
Solve 25v+v25​=75:v=23+5​​,v=23−5​​
25v+v25​=75
Multiply both sides by v
25v+v25​=75
Multiply both sides by v25vv+v25​v=75v
Simplify
25vv+v25​v=75v
Simplify 25vv:25v2
25vv
Apply exponent rule: ab⋅ac=ab+cvv=v1+1=25v1+1
Add the numbers: 1+1=2=25v2
Simplify v25​v:25
v25​v
Multiply fractions: a⋅cb​=ca⋅b​=v25v​
Cancel the common factor: v=25
25v2+25=75v
25v2+25=75v
25v2+25=75v
Solve 25v2+25=75v:v=23+5​​,v=23−5​​
25v2+25=75v
Move 75vto the left side
25v2+25=75v
Subtract 75v from both sides25v2+25−75v=75v−75v
Simplify25v2+25−75v=0
25v2+25−75v=0
Write in the standard form ax2+bx+c=025v2−75v+25=0
Solve with the quadratic formula
25v2−75v+25=0
Quadratic Equation Formula:
For a=25,b=−75,c=25v1,2​=2⋅25−(−75)±(−75)2−4⋅25⋅25​​
v1,2​=2⋅25−(−75)±(−75)2−4⋅25⋅25​​
(−75)2−4⋅25⋅25​=255​
(−75)2−4⋅25⋅25​
Apply exponent rule: (−a)n=an,if n is even(−75)2=752=752−4⋅25⋅25​
Multiply the numbers: 4⋅25⋅25=2500=752−2500​
752=5625=5625−2500​
Subtract the numbers: 5625−2500=3125=3125​
Prime factorization of 3125:55
3125
3125divides by 53125=625⋅5=5⋅625
625divides by 5625=125⋅5=5⋅5⋅125
125divides by 5125=25⋅5=5⋅5⋅5⋅25
25divides by 525=5⋅5=5⋅5⋅5⋅5⋅5
5 is a prime number, therefore no further factorization is possible=5⋅5⋅5⋅5⋅5
=55
=55​
Apply exponent rule: ab+c=ab⋅ac=54⋅5​
Apply radical rule: nab​=na​nb​=5​54​
Apply radical rule: nam​=anm​54​=524​=52=525​
Refine=255​
v1,2​=2⋅25−(−75)±255​​
Separate the solutionsv1​=2⋅25−(−75)+255​​,v2​=2⋅25−(−75)−255​​
v=2⋅25−(−75)+255​​:23+5​​
2⋅25−(−75)+255​​
Apply rule −(−a)=a=2⋅2575+255​​
Multiply the numbers: 2⋅25=50=5075+255​​
Factor 75+255​:25(3+5​)
75+255​
Rewrite as=25⋅3+255​
Factor out common term 25=25(3+5​)
=5025(3+5​)​
Cancel the common factor: 25=23+5​​
v=2⋅25−(−75)−255​​:23−5​​
2⋅25−(−75)−255​​
Apply rule −(−a)=a=2⋅2575−255​​
Multiply the numbers: 2⋅25=50=5075−255​​
Factor 75−255​:25(3−5​)
75−255​
Rewrite as=25⋅3−255​
Factor out common term 25=25(3−5​)
=5025(3−5​)​
Cancel the common factor: 25=23−5​​
The solutions to the quadratic equation are:v=23+5​​,v=23−5​​
v=23+5​​,v=23−5​​
Verify Solutions
Find undefined (singularity) points:v=0
Take the denominator(s) of 25v+v25​ and compare to zero
v=0
The following points are undefinedv=0
Combine undefined points with solutions:
v=23+5​​,v=23−5​​
v=23+5​​,v=23−5​​
Substitute back v=u501​,solve for u
Solve u501​=23+5​​:u=250(3+5​)50​
u501​=23+5​​
Take both sides of the equation to the power of 50:u=250(3+5​)50​
u501​=23+5​​
(u501​)50=(23+5​​)50
Expand (u501​)50:u
(u501​)50
Apply exponent rule: (ab)c=abc=u501​⋅50
501​⋅50=1
501​⋅50
Multiply fractions: a⋅cb​=ca⋅b​=501⋅50​
Cancel the common factor: 50=1
=u
Expand (23+5​​)50:250(3+5​)50​
(23+5​​)50
Apply exponent rule: (ba​)c=bcac​=250(3+5​)50​
u=250(3+5​)50​
u=250(3+5​)50​
Verify Solutions:u=250(3+5​)50​True
Check the solutions by plugging them into u501​=23+5​​
Remove the ones that don't agree with the equation.
Plug in u=250(3+5​)50​:True
(250(3+5​)50​)501​=23+5​​
(250(3+5​)50​)501​=23+5​​
(250(3+5​)50​)501​
Apply radical rule: nba​​=nb​na​​, assuming a≥0,b≥0=50250​50(3+5​)50​​
Apply radical rule: nan​=a, assuming a≥050250​=2=250(3+5​)50​​
Apply radical rule: nan​=a, assuming a≥050(3+5​)50​=3+5​=23+5​​
23+5​​=23+5​​
True
The solution isu=250(3+5​)50​
Solve u501​=23−5​​:u=250(3−5​)50​
u501​=23−5​​
Take both sides of the equation to the power of 50:u=250(3−5​)50​
u501​=23−5​​
(u501​)50=(23−5​​)50
Expand (u501​)50:u
(u501​)50
Apply exponent rule: (ab)c=abc=u501​⋅50
501​⋅50=1
501​⋅50
Multiply fractions: a⋅cb​=ca⋅b​=501⋅50​
Cancel the common factor: 50=1
=u
Expand (23−5​​)50:250(3−5​)50​
(23−5​​)50
Apply exponent rule: (ba​)c=bcac​=250(3−5​)50​
u=250(3−5​)50​
u=250(3−5​)50​
Verify Solutions:u=250(3−5​)50​True
Check the solutions by plugging them into u501​=23−5​​
Remove the ones that don't agree with the equation.
Plug in u=250(3−5​)50​:True
(250(3−5​)50​)501​=23−5​​
(250(3−5​)50​)501​=23−5​​
(250(3−5​)50​)501​
Apply radical rule: nba​​=nb​na​​, assuming a≥0,b≥0=50250​50(3−5​)50​​
Apply radical rule: nan​=a, assuming a≥050250​=2=250(3−5​)50​​
Apply radical rule: nan​=a, assuming a≥050(3−5​)50​=3−5​=23−5​​
23−5​​=23−5​​
True
The solution isu=250(3−5​)50​
u=250(3+5​)50​,u=250(3−5​)50​
Verify Solutions:u=250(3+5​)50​True,u=250(3−5​)50​True
Check the solutions by plugging them into 502u0.02+u−0.02​=75
Remove the ones that don't agree with the equation.
Plug in u=250(3+5​)50​:True
50⋅2(250(3+5​)50​)0.02+(250(3+5​)50​)−0.02​=75
50⋅2(250(3+5​)50​)0.02+(250(3+5​)50​)−0.02​=75
50⋅2(250(3+5​)50​)0.02+(250(3+5​)50​)−0.02​
2(250(3+5​)50​)0.02+(250(3+5​)50​)−0.02​=23​
2(250(3+5​)50​)0.02+(250(3+5​)50​)−0.02​
(250(3+5​)50​)0.02=2.61803…
(250(3+5​)50​)0.02
250(3+5​)50​=7.92071E20
250(3+5​)50​
Convert element to a decimal form250=1.1259E15=1.1259E15(3+5​)50​
Convert element to a decimal form(3+5​)50=8.91792E35=1.1259E158.91792E35​
Divide the numbers: 1.1259E158.91792E35​=7.92071E20=7.92071E20
=7.92071E200.02
7.92071E200.02=2.61803…=2.61803…
(250(3+5​)50​)−0.02=0.38196…
(250(3+5​)50​)−0.02
250(3+5​)50​=7.92071E20
250(3+5​)50​
Convert element to a decimal form250=1.1259E15=1.1259E15(3+5​)50​
Convert element to a decimal form(3+5​)50=8.91792E35=1.1259E158.91792E35​
Divide the numbers: 1.1259E158.91792E35​=7.92071E20=7.92071E20
=7.92071E20−0.02
7.92071E20−0.02=0.38196…=0.38196…
=22.61803…+0.38196…​
Add the numbers: 2.61803…+0.38196…=3=23​
=50⋅23​
Multiply fractions: a⋅cb​=ca⋅b​=23⋅50​
Multiply the numbers: 3⋅50=150=2150​
Divide the numbers: 2150​=75=75
75=75
True
Plug in u=250(3−5​)50​:True
50⋅2(250(3−5​)50​)0.02+(250(3−5​)50​)−0.02​=75
50⋅2(250(3−5​)50​)0.02+(250(3−5​)50​)−0.02​=75
50⋅2(250(3−5​)50​)0.02+(250(3−5​)50​)−0.02​
2(250(3−5​)50​)0.02+(250(3−5​)50​)−0.02​=23​
2(250(3−5​)50​)0.02+(250(3−5​)50​)−0.02​
(250(3−5​)50​)0.02=0.38196…
(250(3−5​)50​)0.02
250(3−5​)50​=1.26251E−21
250(3−5​)50​
Convert element to a decimal form250=1.1259E15=1.1259E15(3−5​)50​
Convert element to a decimal form(3−5​)50=1.42146E−6=1.1259E151.42146E−6​
Divide the numbers: 1.1259E151.42146E−6​=1.26251E−21=1.26251E−21
=1.26251E−210.02
1.26251E−210.02=0.38196…=0.38196…
(250(3−5​)50​)−0.02=2.61803…
(250(3−5​)50​)−0.02
250(3−5​)50​=1.26251E−21
250(3−5​)50​
Convert element to a decimal form250=1.1259E15=1.1259E15(3−5​)50​
Convert element to a decimal form(3−5​)50=1.42146E−6=1.1259E151.42146E−6​
Divide the numbers: 1.1259E151.42146E−6​=1.26251E−21=1.26251E−21
=1.26251E−21−0.02
Apply exponent rule: a−b=ab1​=1.26251E−210.021​
1.26251E−210.02=0.38196…=0.38196…1​
Divide the numbers: 0.38196…1​=2.61803…=2.61803…
=20.38196…+2.61803…​
Add the numbers: 0.38196…+2.61803…=3=23​
=50⋅23​
Multiply fractions: a⋅cb​=ca⋅b​=23⋅50​
Multiply the numbers: 3⋅50=150=2150​
Divide the numbers: 2150​=75=75
75=75
True
The solutions areu=250(3+5​)50​,u=250(3−5​)50​
u=250(3+5​)50​,u=250(3−5​)50​
Substitute back u=ex,solve for x
Solve ex=250(3+5​)50​:x=50ln(23+5​​)
ex=250(3+5​)50​
Apply exponent rules
ex=250(3+5​)50​
Apply exponent rule: ab1​=a−b2501​=2−50ex=(3+5​)50⋅2−50
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln((3+5​)50⋅2−50)
Apply log rule: ln(ea)=aln(ex)=xx=ln((3+5​)50⋅2−50)
Simplify ln((3+5​)50⋅2−50):50ln(23+5​​)
ln((3+5​)50⋅2−50)
Multiply (3+5​)50⋅2−50:250(3+5​)50​
(3+5​)50⋅2−50
Apply exponent rule: a−b=ab1​2−50=2501​=2501​(3+5​)50
Multiply fractions: a⋅cb​=ca⋅b​=2501⋅(3+5​)50​
Multiply: 1⋅(3+5​)50=(3+5​)50=250(3+5​)50​
=ln(250(3+5​)50​)
Combine same powers : ynxn​=(yx​)n=ln​(23+5​​)50​
Apply log rule loga​(xb)=b⋅loga​(x), assuming x≥0=50ln(23+5​​)
x=50ln(23+5​​)
x=50ln(23+5​​)
Solve ex=250(3−5​)50​:No Solution for x∈R
ex=250(3−5​)50​
Apply exponent rules
ex=250(3−5​)50​
Apply exponent rule: ab1​=a−b2501​=2−50ex=(3−5​)50⋅2−50
ex=(3−5​)50⋅2−50
af(x) cannot be zero or negative for x∈RNoSolutionforx∈R
x=50ln(23+5​​)
x=50ln(23+5​​)

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

3sin^2(θ)-4=-4sin(θ)3sin2(θ)−4=−4sin(θ)2cos^2(x)-1+cos(x)=02cos2(x)−1+cos(x)=04cot(θ)sin(θ)=24cot(θ)sin(θ)=22sin(2x)-5tan(2x)=02sin(2x)−5tan(2x)=075= 120/4*cos((2*pi*x)/(360))+120/275=4120​⋅cos(3602⋅π⋅x​)+2120​

Frequently Asked Questions (FAQ)

  • What is the general solution for 75=50cosh(x/(50)) ?

    The general solution for 75=50cosh(x/(50)) is x=50ln((3+sqrt(5))/2)
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024