Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(1+tan^2(27*θ))/(1-tan^2(27*θ))=sqrt(2)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

1−tan2(27⋅θ)1+tan2(27⋅θ)​=2​

Solution

θ=270.39269…​+27πn​,θ=27−0.39269…​+27πn​
+1
Degrees
θ=0.83333…∘+6.66666…∘n,θ=−0.83333…∘+6.66666…∘n
Solution steps
1−tan2(27θ)1+tan2(27θ)​=2​
Solve by substitution
1−tan2(27θ)1+tan2(27θ)​=2​
Let: tan(27θ)=u1−u21+u2​=2​
1−u21+u2​=2​:u=2​−1,u=−2​+1
1−u21+u2​=2​
Multiply both sides by 1−u2
1−u21+u2​=2​
Multiply both sides by 1−u21−u21+u2​(1−u2)=2​(1−u2)
Simplify1+u2=2​(1−u2)
1+u2=2​(1−u2)
Solve 1+u2=2​(1−u2):u=2​−1,u=−2​+1
1+u2=2​(1−u2)
Move 1to the right side
1+u2=2​(1−u2)
Subtract 1 from both sides1+u2−1=2​(1−u2)−1
Simplifyu2=2​(1−u2)−1
u2=2​(1−u2)−1
Move 2​(1−u2)to the left side
u2=2​(1−u2)−1
Subtract 2​(1−u2) from both sidesu2−2​(1−u2)=2​(1−u2)−1−2​(1−u2)
Simplifyu2−2​(1−u2)=−1
u2−2​(1−u2)=−1
Expand −2​(1−u2):−2​+2​u2
−2​(1−u2)
Apply the distributive law: a(b−c)=ab−aca=−2​,b=1,c=u2=−2​⋅1−(−2​)u2
Apply minus-plus rules−(−a)=a=−1⋅2​+2​u2
Multiply: 1⋅2​=2​=−2​+2​u2
u2−2​+2​u2=−1
Move 2​to the right side
u2−2​+2​u2=−1
Add 2​ to both sidesu2−2​+2​u2+2​=−1+2​
Simplifyu2+2​u2=−1+2​
u2+2​u2=−1+2​
Factor u2+2​u2:(1+2​)u2
u2+2​u2
Factor out common term u2=u2(1+2​)
(1+2​)u2=−1+2​
Divide both sides by 1+2​
(1+2​)u2=−1+2​
Divide both sides by 1+2​1+2​(1+2​)u2​=−1+2​1​+1+2​2​​
Simplify
1+2​(1+2​)u2​=−1+2​1​+1+2​2​​
Simplify 1+2​(1+2​)u2​:u2
1+2​(1+2​)u2​
Cancel the common factor: 1+2​=u2
Simplify −1+2​1​+1+2​2​​:3−22​
−1+2​1​+1+2​2​​
Apply rule ca​±cb​=ca±b​=1+2​−1+2​​
Multiply by the conjugate 1−2​1−2​​=(1+2​)(1−2​)(−1+2​)(1−2​)​
(−1+2​)(1−2​)=22​−3
(−1+2​)(1−2​)
Apply FOIL method: (a+b)(c+d)=ac+ad+bc+bda=−1,b=2​,c=1,d=−2​=(−1)⋅1+(−1)(−2​)+2​⋅1+2​(−2​)
Apply minus-plus rules+(−a)=−a,(−a)(−b)=ab=−1⋅1+1⋅2​+1⋅2​−2​2​
Simplify −1⋅1+1⋅2​+1⋅2​−2​2​:22​−3
−1⋅1+1⋅2​+1⋅2​−2​2​
Add similar elements: 1⋅2​+1⋅2​=22​=−1⋅1+22​−2​2​
Multiply the numbers: 1⋅1=1=−1+22​−2​2​
Apply radical rule: a​a​=a2​2​=2=−1+22​−2
Subtract the numbers: −1−2=−3=22​−3
=22​−3
(1+2​)(1−2​)=−1
(1+2​)(1−2​)
Apply Difference of Two Squares Formula: (a+b)(a−b)=a2−b2a=1,b=2​=12−(2​)2
Simplify 12−(2​)2:−1
12−(2​)2
Apply rule 1a=112=1=1−(2​)2
(2​)2=2
(2​)2
Apply radical rule: a​=a21​=(221​)2
Apply exponent rule: (ab)c=abc=221​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=2
=1−2
Subtract the numbers: 1−2=−1=−1
=−1
=−122​−3​
Apply the fraction rule: −b−a​=ba​22​−3=−(3−22​)=13−22​​
Apply rule 1a​=a=3−22​
u2=3−22​
u2=3−22​
u2=3−22​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=3−22​​,u=−3−22​​
3−22​​=2​−1
3−22​​
=2−22​+1​
=(2​)2−22​+(1​)2​
1​=1
1​
Apply rule 1​=1=1
=(2​)2−22​+12​
22​⋅1=22​
22​⋅1
Multiply the numbers: 2⋅1=2=22​
=(2​)2−22​⋅1+12​
Apply Perfect Square Formula: (a−b)2=a2−2ab+b2(2​)2−22​⋅1+12=(2​−1)2=(2​−1)2​
Apply radical rule: nan​=a(2​−1)2​=2​−1=2​−1
−3−22​​=−2​+1
−3−22​​
3−22​​=2​−1
3−22​​
=2−22​+1​
=(2​)2−22​+(1​)2​
1​=1
1​
Apply rule 1​=1=1
=(2​)2−22​+12​
22​⋅1=22​
22​⋅1
Multiply the numbers: 2⋅1=2=22​
=(2​)2−22​⋅1+12​
Apply Perfect Square Formula: (a−b)2=a2−2ab+b2(2​)2−22​⋅1+12=(2​−1)2=(2​−1)2​
Apply radical rule: nan​=a(2​−1)2​=2​−1=2​−1
=−(2​−1)
Distribute parentheses=−(2​)−(−1)
Apply minus-plus rules−(−a)=a,−(a)=−a=−2​+1
u=2​−1,u=−2​+1
u=2​−1,u=−2​+1
Verify Solutions
Find undefined (singularity) points:u=1,u=−1
Take the denominator(s) of 1−u21+u2​ and compare to zero
Solve 1−u2=0:u=1,u=−1
1−u2=0
Move 1to the right side
1−u2=0
Subtract 1 from both sides1−u2−1=0−1
Simplify−u2=−1
−u2=−1
Divide both sides by −1
−u2=−1
Divide both sides by −1−1−u2​=−1−1​
Simplifyu2=1
u2=1
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=1​,u=−1​
1​=1
1​
Apply radical rule: 1​=1=1
−1​=−1
−1​
Apply radical rule: 1​=11​=1=−1
u=1,u=−1
The following points are undefinedu=1,u=−1
Combine undefined points with solutions:
u=2​−1,u=−2​+1
Substitute back u=tan(27θ)tan(27θ)=2​−1,tan(27θ)=−2​+1
tan(27θ)=2​−1,tan(27θ)=−2​+1
tan(27θ)=2​−1:θ=27arctan(2​−1)​+27πn​
tan(27θ)=2​−1
Apply trig inverse properties
tan(27θ)=2​−1
General solutions for tan(27θ)=2​−1tan(x)=a⇒x=arctan(a)+πn27θ=arctan(2​−1)+πn
27θ=arctan(2​−1)+πn
Solve 27θ=arctan(2​−1)+πn:θ=27arctan(2​−1)​+27πn​
27θ=arctan(2​−1)+πn
Divide both sides by 27
27θ=arctan(2​−1)+πn
Divide both sides by 272727θ​=27arctan(2​−1)​+27πn​
Simplifyθ=27arctan(2​−1)​+27πn​
θ=27arctan(2​−1)​+27πn​
θ=27arctan(2​−1)​+27πn​
tan(27θ)=−2​+1:θ=27arctan(−2​+1)​+27πn​
tan(27θ)=−2​+1
Apply trig inverse properties
tan(27θ)=−2​+1
General solutions for tan(27θ)=−2​+1tan(x)=−a⇒x=arctan(−a)+πn27θ=arctan(−2​+1)+πn
27θ=arctan(−2​+1)+πn
Solve 27θ=arctan(−2​+1)+πn:θ=27arctan(−2​+1)​+27πn​
27θ=arctan(−2​+1)+πn
Divide both sides by 27
27θ=arctan(−2​+1)+πn
Divide both sides by 272727θ​=27arctan(−2​+1)​+27πn​
Simplifyθ=27arctan(−2​+1)​+27πn​
θ=27arctan(−2​+1)​+27πn​
θ=27arctan(−2​+1)​+27πn​
Combine all the solutionsθ=27arctan(2​−1)​+27πn​,θ=27arctan(−2​+1)​+27πn​
Show solutions in decimal formθ=270.39269…​+27πn​,θ=27−0.39269…​+27πn​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

tan(x)=-cot(x)tan(x)=−cot(x)3cos^2(x)-sin^2(x)=03cos2(x)−sin2(x)=0cos(x)=-0.6cos(x)=−0.6cos(x)=-0.9cos(x)=−0.92cos(x)+3sin(x)=02cos(x)+3sin(x)=0
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024