Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

-1.9sin(t)=0.4cos(2t)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

−1.9sin(t)=0.4cos(2t)

Solution

t=−0.19583…+2πn,t=π+0.19583…+2πn
+1
Degrees
t=−11.22042…∘+360∘n,t=191.22042…∘+360∘n
Solution steps
−1.9sin(t)=0.4cos(2t)
Subtract 0.4cos(2t) from both sides−1.9sin(t)−0.4cos(2t)=0
Rewrite using trig identities
−0.4cos(2t)−1.9sin(t)
Use the Double Angle identity: cos(2x)=1−2sin2(x)=−0.4(1−2sin2(t))−1.9sin(t)
−(1−2sin2(t))⋅0.4−1.9sin(t)=0
Solve by substitution
−(1−2sin2(t))⋅0.4−1.9sin(t)=0
Let: sin(t)=u−(1−2u2)⋅0.4−1.9u=0
−(1−2u2)⋅0.4−1.9u=0:u=1619+489​​,u=1619−489​​
−(1−2u2)⋅0.4−1.9u=0
Multiply both sides by 10
−(1−2u2)⋅0.4−1.9u=0
To eliminate decimal points, multiply by 10 for every digit after the decimal pointThere is one digit to the right of the decimal point, therefore multiply by 10−(1−2u2)⋅0.4⋅10−1.9u⋅10=0⋅10
Refine−4(1−2u2)−19u=0
−4(1−2u2)−19u=0
Expand −4(1−2u2)−19u:−4+8u2−19u
−4(1−2u2)−19u
Expand −4(1−2u2):−4+8u2
−4(1−2u2)
Apply the distributive law: a(b−c)=ab−aca=−4,b=1,c=2u2=−4⋅1−(−4)⋅2u2
Apply minus-plus rules−(−a)=a=−4⋅1+4⋅2u2
Simplify −4⋅1+4⋅2u2:−4+8u2
−4⋅1+4⋅2u2
Multiply the numbers: 4⋅1=4=−4+4⋅2u2
Multiply the numbers: 4⋅2=8=−4+8u2
=−4+8u2
=−4+8u2−19u
−4+8u2−19u=0
Write in the standard form ax2+bx+c=08u2−19u−4=0
Solve with the quadratic formula
8u2−19u−4=0
Quadratic Equation Formula:
For a=8,b=−19,c=−4u1,2​=2⋅8−(−19)±(−19)2−4⋅8(−4)​​
u1,2​=2⋅8−(−19)±(−19)2−4⋅8(−4)​​
(−19)2−4⋅8(−4)​=489​
(−19)2−4⋅8(−4)​
Apply rule −(−a)=a=(−19)2+4⋅8⋅4​
Apply exponent rule: (−a)n=an,if n is even(−19)2=192=192+4⋅8⋅4​
Multiply the numbers: 4⋅8⋅4=128=192+128​
192=361=361+128​
Add the numbers: 361+128=489=489​
u1,2​=2⋅8−(−19)±489​​
Separate the solutionsu1​=2⋅8−(−19)+489​​,u2​=2⋅8−(−19)−489​​
u=2⋅8−(−19)+489​​:1619+489​​
2⋅8−(−19)+489​​
Apply rule −(−a)=a=2⋅819+489​​
Multiply the numbers: 2⋅8=16=1619+489​​
u=2⋅8−(−19)−489​​:1619−489​​
2⋅8−(−19)−489​​
Apply rule −(−a)=a=2⋅819−489​​
Multiply the numbers: 2⋅8=16=1619−489​​
The solutions to the quadratic equation are:u=1619+489​​,u=1619−489​​
Substitute back u=sin(t)sin(t)=1619+489​​,sin(t)=1619−489​​
sin(t)=1619+489​​,sin(t)=1619−489​​
sin(t)=1619+489​​:No Solution
sin(t)=1619+489​​
−1≤sin(x)≤1NoSolution
sin(t)=1619−489​​:t=arcsin(1619−489​​)+2πn,t=π+arcsin(−1619−489​​)+2πn
sin(t)=1619−489​​
Apply trig inverse properties
sin(t)=1619−489​​
General solutions for sin(t)=1619−489​​sin(x)=−a⇒x=arcsin(−a)+2πn,x=π+arcsin(a)+2πnt=arcsin(1619−489​​)+2πn,t=π+arcsin(−1619−489​​)+2πn
t=arcsin(1619−489​​)+2πn,t=π+arcsin(−1619−489​​)+2πn
Combine all the solutionst=arcsin(1619−489​​)+2πn,t=π+arcsin(−1619−489​​)+2πn
Show solutions in decimal formt=−0.19583…+2πn,t=π+0.19583…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(x/2)=(sqrt(2))/2sin(2x​)=22​​sin(2t)=1sin(2t)=1sin^4(x)=sin^2(x)sin4(x)=sin2(x)2sin^2(x)-3sin(x)=02sin2(x)−3sin(x)=00.32=0.59406cos(x)0.32=0.59406cos(x)

Frequently Asked Questions (FAQ)

  • What is the general solution for -1.9sin(t)=0.4cos(2t) ?

    The general solution for -1.9sin(t)=0.4cos(2t) is t=-0.19583…+2pin,t=pi+0.19583…+2pin
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024