Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos(x/3)-cos(x/(15))=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos(3x​)−cos(15x​)=0

Solution

x=15πn,x=215π​+15πn,x=10πn,x=5π+10πn
+1
Degrees
x=0∘+2700∘n,x=1350∘+2700∘n,x=0∘+1800∘n,x=900∘+1800∘n
Solution steps
cos(3x​)−cos(15x​)=0
Rewrite using trig identities
−cos(15x​)+cos(3x​)
Use the Sum to Product identity: cos(s)−cos(t)=−2sin(2s+t​)sin(2s−t​)=−2sin(23x​+15x​​)sin(23x​−15x​​)
Simplify −2sin(23x​+15x​​)sin(23x​−15x​​):−2sin(5x​)sin(152x​)
−2sin(23x​+15x​​)sin(23x​−15x​​)
23x​+15x​​=5x​
23x​+15x​​
Join 3x​+15x​:52x​
3x​+15x​
Least Common Multiplier of 3,15:15
3,15
Least Common Multiplier (LCM)
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Prime factorization of 15:3⋅5
15
15divides by 315=5⋅3=3⋅5
3,5 are all prime numbers, therefore no further factorization is possible=3⋅5
Multiply each factor the greatest number of times it occurs in either 3 or 15=3⋅5
Multiply the numbers: 3⋅5=15=15
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 15
For 3x​:multiply the denominator and numerator by 53x​=3⋅5x⋅5​=15x⋅5​
=15x⋅5​+15x​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=15x⋅5+x​
Add similar elements: 5x+x=6x=156x​
Cancel the common factor: 3=52x​
=252x​​
Apply the fraction rule: acb​​=c⋅ab​=5⋅22x​
Multiply the numbers: 5⋅2=10=102x​
Cancel the common factor: 2=5x​
=−2sin(5x​)sin(23x​−15x​​)
23x​−15x​​=152x​
23x​−15x​​
Join 3x​−15x​:154x​
3x​−15x​
Least Common Multiplier of 3,15:15
3,15
Least Common Multiplier (LCM)
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Prime factorization of 15:3⋅5
15
15divides by 315=5⋅3=3⋅5
3,5 are all prime numbers, therefore no further factorization is possible=3⋅5
Multiply each factor the greatest number of times it occurs in either 3 or 15=3⋅5
Multiply the numbers: 3⋅5=15=15
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 15
For 3x​:multiply the denominator and numerator by 53x​=3⋅5x⋅5​=15x⋅5​
=15x⋅5​−15x​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=15x⋅5−x​
Add similar elements: 5x−x=4x=154x​
=2154x​​
Apply the fraction rule: acb​​=c⋅ab​=15⋅24x​
Multiply the numbers: 15⋅2=30=304x​
Cancel the common factor: 2=152x​
=−2sin(5x​)sin(152x​)
=−2sin(5x​)sin(152x​)
−2sin(152x​)sin(5x​)=0
Solving each part separatelysin(152x​)=0orsin(5x​)=0
sin(152x​)=0:x=15πn,x=215π​+15πn
sin(152x​)=0
General solutions for sin(152x​)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
152x​=0+2πn,152x​=π+2πn
152x​=0+2πn,152x​=π+2πn
Solve 152x​=0+2πn:x=15πn
152x​=0+2πn
0+2πn=2πn152x​=2πn
Multiply both sides by 15
152x​=2πn
Multiply both sides by 151515⋅2x​=15⋅2πn
Simplify2x=30πn
2x=30πn
Divide both sides by 2
2x=30πn
Divide both sides by 222x​=230πn​
Simplifyx=15πn
x=15πn
Solve 152x​=π+2πn:x=215π​+15πn
152x​=π+2πn
Multiply both sides by 15
152x​=π+2πn
Multiply both sides by 151515⋅2x​=15π+15⋅2πn
Simplify2x=15π+30πn
2x=15π+30πn
Divide both sides by 2
2x=15π+30πn
Divide both sides by 222x​=215π​+230πn​
Simplifyx=215π​+15πn
x=215π​+15πn
x=15πn,x=215π​+15πn
sin(5x​)=0:x=10πn,x=5π+10πn
sin(5x​)=0
General solutions for sin(5x​)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
5x​=0+2πn,5x​=π+2πn
5x​=0+2πn,5x​=π+2πn
Solve 5x​=0+2πn:x=10πn
5x​=0+2πn
0+2πn=2πn5x​=2πn
Multiply both sides by 5
5x​=2πn
Multiply both sides by 555x​=5⋅2πn
Simplifyx=10πn
x=10πn
Solve 5x​=π+2πn:x=5π+10πn
5x​=π+2πn
Multiply both sides by 5
5x​=π+2πn
Multiply both sides by 555x​=5π+5⋅2πn
Simplifyx=5π+10πn
x=5π+10πn
x=10πn,x=5π+10πn
Combine all the solutionsx=15πn,x=215π​+15πn,x=10πn,x=5π+10πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

arctan(x)=3arctan(x)=3tan(x)cos(x)=cos(x)tan(x)cos(x)=cos(x)4cos^2(θ)-2=-14cos2(θ)−2=−1sinh(x)= 7/24 ,cosh(x)sinh(x)=247​,cosh(x)2sin(x)+sin(2x)=cos(x)+12sin(x)+sin(2x)=cos(x)+1

Frequently Asked Questions (FAQ)

  • What is the general solution for cos(x/3)-cos(x/(15))=0 ?

    The general solution for cos(x/3)-cos(x/(15))=0 is x=15pin,x=(15pi)/2+15pin,x=10pin,x=5pi+10pin
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024