Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan^2(x)+csc^2(x)-3=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan2(x)+csc2(x)−3=0

Solution

x=4π​+2πn,x=43π​+2πn,x=45π​+2πn,x=47π​+2πn
+1
Degrees
x=45∘+360∘n,x=135∘+360∘n,x=225∘+360∘n,x=315∘+360∘n
Solution steps
tan2(x)+csc2(x)−3=0
Rewrite using trig identities
−3+csc2(x)+tan2(x)
Use the basic trigonometric identity: tan(x)=cot(x)1​=−3+csc2(x)+(cot(x)1​)2
(cot(x)1​)2=cot2(x)1​
(cot(x)1​)2
Apply exponent rule: (ba​)c=bcac​=cot2(x)12​
Apply rule 1a=112=1=cot2(x)1​
=−3+csc2(x)+cot2(x)1​
Use the Pythagorean identity: 1+cot2(x)=csc2(x)cot2(x)=csc2(x)−1=−3+csc2(x)+csc2(x)−11​
−3+csc2(x)+−1+csc2(x)1​=0
Solve by substitution
−3+csc2(x)+−1+csc2(x)1​=0
Let: csc(x)=u−3+u2+−1+u21​=0
−3+u2+−1+u21​=0:u=2​,u=−2​
−3+u2+−1+u21​=0
Multiply both sides by −1+u2
−3+u2+−1+u21​=0
Multiply both sides by −1+u2−3(−1+u2)+u2(−1+u2)+−1+u21​(−1+u2)=0⋅(−1+u2)
Simplify
−3(−1+u2)+u2(−1+u2)+−1+u21​(−1+u2)=0⋅(−1+u2)
Simplify −1+u21​(−1+u2):1
−1+u21​(−1+u2)
Multiply fractions: a⋅cb​=ca⋅b​=−1+u21⋅(−1+u2)​
1⋅(−1+u2)=−1+u2
1⋅(−1+u2)
Multiply: 1⋅(−1+u2)=(−1+u2)=(−1+u2)
Remove parentheses: (−a)=−a=−1+u2
=−1+u2−1+u2​
Apply rule aa​=1=1
Simplify 0⋅(−1+u2):0
0⋅(−1+u2)
Apply rule 0⋅a=0=0
−3(−1+u2)+u2(−1+u2)+1=0
−3(−1+u2)+u2(−1+u2)+1=0
−3(−1+u2)+u2(−1+u2)+1=0
Solve −3(−1+u2)+u2(−1+u2)+1=0:u=2​,u=−2​
−3(−1+u2)+u2(−1+u2)+1=0
Expand −3(−1+u2)+u2(−1+u2)+1:u4−4u2+4
−3(−1+u2)+u2(−1+u2)+1
Expand −3(−1+u2):3−3u2
−3(−1+u2)
Apply the distributive law: a(b+c)=ab+aca=−3,b=−1,c=u2=−3(−1)+(−3)u2
Apply minus-plus rules−(−a)=a,+(−a)=−a=3⋅1−3u2
Multiply the numbers: 3⋅1=3=3−3u2
=3−3u2+u2(−1+u2)+1
Expand u2(−1+u2):−u2+u4
u2(−1+u2)
Apply the distributive law: a(b+c)=ab+aca=u2,b=−1,c=u2=u2(−1)+u2u2
Apply minus-plus rules+(−a)=−a=−1⋅u2+u2u2
Simplify −1⋅u2+u2u2:−u2+u4
−1⋅u2+u2u2
1⋅u2=u2
1⋅u2
Multiply: 1⋅u2=u2=u2
u2u2=u4
u2u2
Apply exponent rule: ab⋅ac=ab+cu2u2=u2+2=u2+2
Add the numbers: 2+2=4=u4
=−u2+u4
=−u2+u4
=3−3u2−u2+u4+1
Simplify 3−3u2−u2+u4+1:u4−4u2+4
3−3u2−u2+u4+1
Add similar elements: −3u2−u2=−4u2=3−4u2+u4+1
Group like terms=u4−4u2+3+1
Add the numbers: 3+1=4=u4−4u2+4
=u4−4u2+4
u4−4u2+4=0
Rewrite the equation with v=u2 and v2=u4v2−4v+4=0
Solve v2−4v+4=0:v=2
v2−4v+4=0
Solve with the quadratic formula
v2−4v+4=0
Quadratic Equation Formula:
For a=1,b=−4,c=4v1,2​=2⋅1−(−4)±(−4)2−4⋅1⋅4​​
v1,2​=2⋅1−(−4)±(−4)2−4⋅1⋅4​​
(−4)2−4⋅1⋅4=0
(−4)2−4⋅1⋅4
Apply exponent rule: (−a)n=an,if n is even(−4)2=42=42−4⋅1⋅4
Multiply the numbers: 4⋅1⋅4=16=42−16
42=16=16−16
Subtract the numbers: 16−16=0=0
v1,2​=2⋅1−(−4)±0​​
v=2⋅1−(−4)​
2⋅1−(−4)​=2
2⋅1−(−4)​
Apply rule −(−a)=a=2⋅14​
Multiply the numbers: 2⋅1=2=24​
Divide the numbers: 24​=2=2
v=2
The solution to the quadratic equation is:v=2
v=2
Substitute back v=u2,solve for u
Solve u2=2:u=2​,u=−2​
u2=2
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=2​,u=−2​
The solutions are
u=2​,u=−2​
u=2​,u=−2​
Verify Solutions
Find undefined (singularity) points:u=1,u=−1
Take the denominator(s) of −3+u2+−1+u21​ and compare to zero
Solve −1+u2=0:u=1,u=−1
−1+u2=0
Move 1to the right side
−1+u2=0
Add 1 to both sides−1+u2+1=0+1
Simplifyu2=1
u2=1
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=1​,u=−1​
1​=1
1​
Apply radical rule: 1​=1=1
−1​=−1
−1​
Apply radical rule: 1​=11​=1=−1
u=1,u=−1
The following points are undefinedu=1,u=−1
Combine undefined points with solutions:
u=2​,u=−2​
Substitute back u=csc(x)csc(x)=2​,csc(x)=−2​
csc(x)=2​,csc(x)=−2​
csc(x)=2​:x=4π​+2πn,x=43π​+2πn
csc(x)=2​
General solutions for csc(x)=2​
csc(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​csc(x)Undefiend22​323​​1323​​2​2​xπ67π​45π​34π​23π​35π​47π​611π​​csc(x)Undefiend−2−2​−323​​−1−323​​−2​−2​​
x=4π​+2πn,x=43π​+2πn
x=4π​+2πn,x=43π​+2πn
csc(x)=−2​:x=45π​+2πn,x=47π​+2πn
csc(x)=−2​
General solutions for csc(x)=−2​
csc(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​csc(x)Undefiend22​323​​1323​​2​2​xπ67π​45π​34π​23π​35π​47π​611π​​csc(x)Undefiend−2−2​−323​​−1−323​​−2​−2​​
x=45π​+2πn,x=47π​+2πn
x=45π​+2πn,x=47π​+2πn
Combine all the solutionsx=4π​+2πn,x=43π​+2πn,x=45π​+2πn,x=47π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(x)=0.67sin(x)=0.67sin(x)=0.69sin(x)=0.694cos^2(x)-4=15cos(x)4cos2(x)−4=15cos(x)(cos(θ)-1)sin(θ)=0(cos(θ)−1)sin(θ)=0sin(a)=0sin(a)=0
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024