Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

9cosh(x)-5sinh(x)=15

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

9cosh(x)−5sinh(x)=15

Solution

x=ln(7),x=−ln(2)
+1
Degrees
x=111.49243…∘,x=−39.71440…∘
Solution steps
9cosh(x)−5sinh(x)=15
Rewrite using trig identities
9cosh(x)−5sinh(x)=15
Use the Hyperbolic identity: sinh(x)=2ex−e−x​9cosh(x)−5⋅2ex−e−x​=15
Use the Hyperbolic identity: cosh(x)=2ex+e−x​9⋅2ex+e−x​−5⋅2ex−e−x​=15
9⋅2ex+e−x​−5⋅2ex−e−x​=15
9⋅2ex+e−x​−5⋅2ex−e−x​=15:x=ln(7),x=−ln(2)
9⋅2ex+e−x​−5⋅2ex−e−x​=15
Apply exponent rules
9⋅2ex+e−x​−5⋅2ex−e−x​=15
Apply exponent rule: abc=(ab)ce−x=(ex)−19⋅2ex+(ex)−1​−5⋅2ex−(ex)−1​=15
9⋅2ex+(ex)−1​−5⋅2ex−(ex)−1​=15
Rewrite the equation with ex=u9⋅2u+(u)−1​−5⋅2u−(u)−1​=15
Solve 9⋅2u+u−1​−5⋅2u−u−1​=15:u=7,u=21​
9⋅2u+u−1​−5⋅2u−u−1​=15
Refine2u9(u2+1)​−2u5(u2−1)​=15
Multiply both sides by 2u
2u9(u2+1)​−2u5(u2−1)​=15
Multiply both sides by 2u2u9(u2+1)​⋅2u−2u5(u2−1)​⋅2u=15⋅2u
Simplify
2u9(u2+1)​⋅2u−2u5(u2−1)​⋅2u=15⋅2u
Simplify 2u9(u2+1)​⋅2u:9(u2+1)
2u9(u2+1)​⋅2u
Multiply fractions: a⋅cb​=ca⋅b​=2u9(u2+1)⋅2u​
Cancel the common factor: 2=u9(u2+1)u​
Cancel the common factor: u=9(u2+1)
Simplify −2u5(u2−1)​⋅2u:−5(u2−1)
−2u5(u2−1)​⋅2u
Multiply fractions: a⋅cb​=ca⋅b​=−2u5(u2−1)⋅2u​
Cancel the common factor: 2=−u5(u2−1)u​
Cancel the common factor: u=−5(u2−1)
Simplify 15⋅2u:30u
15⋅2u
Multiply the numbers: 15⋅2=30=30u
9(u2+1)−5(u2−1)=30u
9(u2+1)−5(u2−1)=30u
9(u2+1)−5(u2−1)=30u
Solve 9(u2+1)−5(u2−1)=30u:u=7,u=21​
9(u2+1)−5(u2−1)=30u
Expand 9(u2+1)−5(u2−1):4u2+14
9(u2+1)−5(u2−1)
Expand 9(u2+1):9u2+9
9(u2+1)
Apply the distributive law: a(b+c)=ab+aca=9,b=u2,c=1=9u2+9⋅1
Multiply the numbers: 9⋅1=9=9u2+9
=9u2+9−5(u2−1)
Expand −5(u2−1):−5u2+5
−5(u2−1)
Apply the distributive law: a(b−c)=ab−aca=−5,b=u2,c=1=−5u2−(−5)⋅1
Apply minus-plus rules−(−a)=a=−5u2+5⋅1
Multiply the numbers: 5⋅1=5=−5u2+5
=9u2+9−5u2+5
Simplify 9u2+9−5u2+5:4u2+14
9u2+9−5u2+5
Group like terms=9u2−5u2+9+5
Add similar elements: 9u2−5u2=4u2=4u2+9+5
Add the numbers: 9+5=14=4u2+14
=4u2+14
4u2+14=30u
Move 30uto the left side
4u2+14=30u
Subtract 30u from both sides4u2+14−30u=30u−30u
Simplify4u2+14−30u=0
4u2+14−30u=0
Write in the standard form ax2+bx+c=04u2−30u+14=0
Solve with the quadratic formula
4u2−30u+14=0
Quadratic Equation Formula:
For a=4,b=−30,c=14u1,2​=2⋅4−(−30)±(−30)2−4⋅4⋅14​​
u1,2​=2⋅4−(−30)±(−30)2−4⋅4⋅14​​
(−30)2−4⋅4⋅14​=26
(−30)2−4⋅4⋅14​
Apply exponent rule: (−a)n=an,if n is even(−30)2=302=302−4⋅4⋅14​
Multiply the numbers: 4⋅4⋅14=224=302−224​
302=900=900−224​
Subtract the numbers: 900−224=676=676​
Factor the number: 676=262=262​
Apply radical rule: nan​=a262​=26=26
u1,2​=2⋅4−(−30)±26​
Separate the solutionsu1​=2⋅4−(−30)+26​,u2​=2⋅4−(−30)−26​
u=2⋅4−(−30)+26​:7
2⋅4−(−30)+26​
Apply rule −(−a)=a=2⋅430+26​
Add the numbers: 30+26=56=2⋅456​
Multiply the numbers: 2⋅4=8=856​
Divide the numbers: 856​=7=7
u=2⋅4−(−30)−26​:21​
2⋅4−(−30)−26​
Apply rule −(−a)=a=2⋅430−26​
Subtract the numbers: 30−26=4=2⋅44​
Multiply the numbers: 2⋅4=8=84​
Cancel the common factor: 4=21​
The solutions to the quadratic equation are:u=7,u=21​
u=7,u=21​
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of 92u+u−1​−52u−u−1​ and compare to zero
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=7,u=21​
u=7,u=21​
Substitute back u=ex,solve for x
Solve ex=7:x=ln(7)
ex=7
Apply exponent rules
ex=7
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln(7)
Apply log rule: ln(ea)=aln(ex)=xx=ln(7)
x=ln(7)
Solve ex=21​:x=−ln(2)
ex=21​
Apply exponent rules
ex=21​
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln(21​)
Apply log rule: ln(ea)=aln(ex)=xx=ln(21​)
Simplify ln(21​):−ln(2)
ln(21​)
Apply log rule: loga​(x1​)=−loga​(x)=−ln(2)
x=−ln(2)
x=−ln(2)
x=ln(7),x=−ln(2)
x=ln(7),x=−ln(2)

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

3sin(x)=sqrt(3)cos(x)3sin(x)=3​cos(x)-4sin^2(θ)-7sin(θ)+4=0−4sin2(θ)−7sin(θ)+4=0cos(8x)-cos(4x)=0cos(8x)−cos(4x)=0cos(x)= 4/3cos(x)=34​cos^2(θ)-sin(θ)cos(θ)=0cos2(θ)−sin(θ)cos(θ)=0

Frequently Asked Questions (FAQ)

  • What is the general solution for 9cosh(x)-5sinh(x)=15 ?

    The general solution for 9cosh(x)-5sinh(x)=15 is x=ln(7),x=-ln(2)
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024