Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(sin(x))/(1+cos(x))+cot(x)=2

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

1+cos(x)sin(x)​+cot(x)=2

Solution

x=6π​+2πn,x=65π​+2πn
+1
Degrees
x=30∘+360∘n,x=150∘+360∘n
Solution steps
1+cos(x)sin(x)​+cot(x)=2
Subtract 2 from both sides1+cos(x)sin(x)​+cot(x)−2=0
Simplify 1+cos(x)sin(x)​+cot(x)−2:1+cos(x)sin(x)+cot(x)(1+cos(x))−2(1+cos(x))​
1+cos(x)sin(x)​+cot(x)−2
Convert element to fraction: cot(x)=1+cos(x)cot(x)(1+cos(x))​,2=1+cos(x)2(1+cos(x))​=1+cos(x)sin(x)​+1+cos(x)cot(x)(1+cos(x))​−1+cos(x)2(1+cos(x))​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=1+cos(x)sin(x)+cot(x)(1+cos(x))−2(1+cos(x))​
1+cos(x)sin(x)+cot(x)(1+cos(x))−2(1+cos(x))​=0
g(x)f(x)​=0⇒f(x)=0sin(x)+cot(x)(1+cos(x))−2(1+cos(x))=0
Express with sin, cos
sin(x)−(1+cos(x))⋅2+(1+cos(x))cot(x)
Use the basic trigonometric identity: cot(x)=sin(x)cos(x)​=sin(x)−(1+cos(x))⋅2+(1+cos(x))sin(x)cos(x)​
Simplify sin(x)−(1+cos(x))⋅2+(1+cos(x))sin(x)cos(x)​:sin(x)sin2(x)−2sin(x)(1+cos(x))+cos(x)(1+cos(x))​
sin(x)−(1+cos(x))⋅2+(1+cos(x))sin(x)cos(x)​
Multiply (1+cos(x))sin(x)cos(x)​:sin(x)cos(x)(cos(x)+1)​
(1+cos(x))sin(x)cos(x)​
Multiply fractions: a⋅cb​=ca⋅b​=sin(x)cos(x)(1+cos(x))​
=sin(x)−2(cos(x)+1)+sin(x)cos(x)(cos(x)+1)​
Convert element to fraction: sin(x)=sin(x)sin(x)sin(x)​,2(cos(x)+1)=sin(x)(1+cos(x))2sin(x)​=sin(x)sin(x)sin(x)​−sin(x)(1+cos(x))⋅2sin(x)​+sin(x)cos(x)(1+cos(x))​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sin(x)sin(x)sin(x)−(1+cos(x))⋅2sin(x)+cos(x)(1+cos(x))​
sin(x)sin(x)−(1+cos(x))⋅2sin(x)+cos(x)(1+cos(x))=sin2(x)−2sin(x)(1+cos(x))+cos(x)(1+cos(x))
sin(x)sin(x)−(1+cos(x))⋅2sin(x)+cos(x)(1+cos(x))
sin(x)sin(x)=sin2(x)
sin(x)sin(x)
Apply exponent rule: ab⋅ac=ab+csin(x)sin(x)=sin1+1(x)=sin1+1(x)
Add the numbers: 1+1=2=sin2(x)
=sin2(x)−2sin(x)(cos(x)+1)+cos(x)(cos(x)+1)
=sin(x)sin2(x)−2sin(x)(cos(x)+1)+cos(x)(cos(x)+1)​
=sin(x)sin2(x)−2sin(x)(1+cos(x))+cos(x)(1+cos(x))​
sin(x)sin2(x)+(1+cos(x))cos(x)−(1+cos(x))⋅2sin(x)​=0
g(x)f(x)​=0⇒f(x)=0sin2(x)+(1+cos(x))cos(x)−(1+cos(x))⋅2sin(x)=0
Rewrite using trig identities
sin2(x)+(1+cos(x))cos(x)−(1+cos(x))⋅2sin(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=1−cos2(x)+(1+cos(x))cos(x)−(1+cos(x))⋅2sin(x)
Simplify 1−cos2(x)+(1+cos(x))cos(x)−(1+cos(x))⋅2sin(x):cos(x)−2sin(x)−2sin(x)cos(x)+1
1−cos2(x)+(1+cos(x))cos(x)−(1+cos(x))⋅2sin(x)
=1−cos2(x)+cos(x)(1+cos(x))−2sin(x)(1+cos(x))
Expand cos(x)(1+cos(x)):cos(x)+cos2(x)
cos(x)(1+cos(x))
Apply the distributive law: a(b+c)=ab+aca=cos(x),b=1,c=cos(x)=cos(x)⋅1+cos(x)cos(x)
=1⋅cos(x)+cos(x)cos(x)
Simplify 1⋅cos(x)+cos(x)cos(x):cos(x)+cos2(x)
1⋅cos(x)+cos(x)cos(x)
1⋅cos(x)=cos(x)
1⋅cos(x)
Multiply: 1⋅cos(x)=cos(x)=cos(x)
cos(x)cos(x)=cos2(x)
cos(x)cos(x)
Apply exponent rule: ab⋅ac=ab+ccos(x)cos(x)=cos1+1(x)=cos1+1(x)
Add the numbers: 1+1=2=cos2(x)
=cos(x)+cos2(x)
=cos(x)+cos2(x)
=1−cos2(x)+cos(x)+cos2(x)−(1+cos(x))⋅2sin(x)
Expand −2sin(x)(1+cos(x)):−2sin(x)−2sin(x)cos(x)
−2sin(x)(1+cos(x))
Apply the distributive law: a(b+c)=ab+aca=−2sin(x),b=1,c=cos(x)=−2sin(x)⋅1+(−2sin(x))cos(x)
Apply minus-plus rules+(−a)=−a=−2⋅1⋅sin(x)−2sin(x)cos(x)
Multiply the numbers: 2⋅1=2=−2sin(x)−2sin(x)cos(x)
=1−cos2(x)+cos(x)+cos2(x)−2sin(x)−2sin(x)cos(x)
Simplify 1−cos2(x)+cos(x)+cos2(x)−2sin(x)−2sin(x)cos(x):cos(x)−2sin(x)−2sin(x)cos(x)+1
1−cos2(x)+cos(x)+cos2(x)−2sin(x)−2sin(x)cos(x)
Group like terms=−cos2(x)+cos(x)+cos2(x)−2sin(x)−2sin(x)cos(x)+1
Add similar elements: −cos2(x)+cos2(x)=0=cos(x)−2sin(x)−2sin(x)cos(x)+1
=cos(x)−2sin(x)−2sin(x)cos(x)+1
=cos(x)−2sin(x)−2sin(x)cos(x)+1
1+cos(x)−2sin(x)−2cos(x)sin(x)=0
Factor 1+cos(x)−2sin(x)−2cos(x)sin(x):(1−2sin(x))(cos(x)+1)
1+cos(x)−2sin(x)−2cos(x)sin(x)
Factor out common term cos(x)=1+cos(x)(1−2sin(x))−2sin(x)
Rewrite as=(1−2sin(x))cos(x)+1⋅(1−2sin(x))
Factor out common term (1−2sin(x))=(1−2sin(x))(cos(x)+1)
(1−2sin(x))(cos(x)+1)=0
Solving each part separately1−2sin(x)=0orcos(x)+1=0
1−2sin(x)=0:x=6π​+2πn,x=65π​+2πn
1−2sin(x)=0
Move 1to the right side
1−2sin(x)=0
Subtract 1 from both sides1−2sin(x)−1=0−1
Simplify−2sin(x)=−1
−2sin(x)=−1
Divide both sides by −2
−2sin(x)=−1
Divide both sides by −2−2−2sin(x)​=−2−1​
Simplifysin(x)=21​
sin(x)=21​
General solutions for sin(x)=21​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=6π​+2πn,x=65π​+2πn
x=6π​+2πn,x=65π​+2πn
cos(x)+1=0:x=π+2πn
cos(x)+1=0
Move 1to the right side
cos(x)+1=0
Subtract 1 from both sidescos(x)+1−1=0−1
Simplifycos(x)=−1
cos(x)=−1
General solutions for cos(x)=−1
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=π+2πn
x=π+2πn
Combine all the solutionsx=6π​+2πn,x=65π​+2πn,x=π+2πn
Since the equation is undefined for:π+2πnx=6π​+2πn,x=65π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

4cos(2θ)+16cos(θ)+4=9cos(θ)4cos(2θ)+16cos(θ)+4=9cos(θ)sin(θ)=(7pi)/3sin(θ)=37π​tan(x)*cos^2(x)-tan(x)=0tan(x)⋅cos2(x)−tan(x)=0sin(x+pi)-sin(x)+sqrt(2)=0sin(x+π)−sin(x)+2​=03tan(x)=-33tan(x)=−3

Frequently Asked Questions (FAQ)

  • What is the general solution for (sin(x))/(1+cos(x))+cot(x)=2 ?

    The general solution for (sin(x))/(1+cos(x))+cot(x)=2 is x= pi/6+2pin,x=(5pi)/6+2pin
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024