Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tanh(x)= 12/13

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tanh(x)=1312​

Solution

x=ln(5)
+1
Degrees
x=92.21399…∘
Solution steps
tanh(x)=1312​
Rewrite using trig identities
tanh(x)=1312​
Use the Hyperbolic identity: tanh(x)=ex+e−xex−e−x​ex+e−xex−e−x​=1312​
ex+e−xex−e−x​=1312​
ex+e−xex−e−x​=1312​:x=ln(5)
ex+e−xex−e−x​=1312​
Apply fraction cross multiply: if ba​=dc​ then a⋅d=b⋅c(ex−e−x)⋅13=(ex+e−x)⋅12
Apply exponent rules
(ex−e−x)⋅13=(ex+e−x)⋅12
Apply exponent rule: abc=(ab)ce−x=(ex)−1(ex−(ex)−1)⋅13=(ex+(ex)−1)⋅12
(ex−(ex)−1)⋅13=(ex+(ex)−1)⋅12
Rewrite the equation with ex=u(u−(u)−1)⋅13=(u+(u)−1)⋅12
Solve (u−u−1)⋅13=(u+u−1)⋅12:u=5,u=−5
(u−u−1)⋅13=(u+u−1)⋅12
Refine(u−u1​)⋅13=(u+u1​)⋅12
Simplify
(u−u1​)⋅13=(u+u1​)⋅12
Simplify (u−u1​)⋅13:13(u−u1​)
(u−u1​)⋅13
Apply the commutative law: (u−u1​)⋅13=13(u−u1​)13(u−u1​)
Simplify (u+u1​)⋅12:12(u+u1​)
(u+u1​)⋅12
Apply the commutative law: (u+u1​)⋅12=12(u+u1​)12(u+u1​)
13(u−u1​)=12(u+u1​)
13(u−u1​)=12(u+u1​)
Expand 13(u−u1​):13u−u13​
13(u−u1​)
Apply the distributive law: a(b−c)=ab−aca=13,b=u,c=u1​=13u−13⋅u1​
13⋅u1​=u13​
13⋅u1​
Multiply fractions: a⋅cb​=ca⋅b​=u1⋅13​
Multiply the numbers: 1⋅13=13=u13​
=13u−u13​
Expand 12(u+u1​):12u+u12​
12(u+u1​)
Apply the distributive law: a(b+c)=ab+aca=12,b=u,c=u1​=12u+12⋅u1​
12⋅u1​=u12​
12⋅u1​
Multiply fractions: a⋅cb​=ca⋅b​=u1⋅12​
Multiply the numbers: 1⋅12=12=u12​
=12u+u12​
13u−u13​=12u+u12​
Multiply both sides by u
13u−u13​=12u+u12​
Multiply both sides by u13uu−u13​u=12uu+u12​u
Simplify
13uu−u13​u=12uu+u12​u
Simplify 13uu:13u2
13uu
Apply exponent rule: ab⋅ac=ab+cuu=u1+1=13u1+1
Add the numbers: 1+1=2=13u2
Simplify −u13​u:−13
−u13​u
Multiply fractions: a⋅cb​=ca⋅b​=−u13u​
Cancel the common factor: u=−13
Simplify 12uu:12u2
12uu
Apply exponent rule: ab⋅ac=ab+cuu=u1+1=12u1+1
Add the numbers: 1+1=2=12u2
Simplify u12​u:12
u12​u
Multiply fractions: a⋅cb​=ca⋅b​=u12u​
Cancel the common factor: u=12
13u2−13=12u2+12
13u2−13=12u2+12
13u2−13=12u2+12
Solve 13u2−13=12u2+12:u=5,u=−5
13u2−13=12u2+12
Move 13to the right side
13u2−13=12u2+12
Add 13 to both sides13u2−13+13=12u2+12+13
Simplify13u2=12u2+25
13u2=12u2+25
Move 12u2to the left side
13u2=12u2+25
Subtract 12u2 from both sides13u2−12u2=12u2+25−12u2
Simplifyu2=25
u2=25
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=25​,u=−25​
25​=5
25​
Factor the number: 25=52=52​
Apply radical rule: a2​=a,a≥052​=5=5
−25​=−5
−25​
Factor the number: 25=52=−52​
Apply radical rule: a2​=a,a≥052​=−5=−5
u=5,u=−5
u=5,u=−5
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of (u−u−1)13 and compare to zero
u=0
Take the denominator(s) of (u+u−1)12 and compare to zero
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=5,u=−5
u=5,u=−5
Substitute back u=ex,solve for x
Solve ex=5:x=ln(5)
ex=5
Apply exponent rules
ex=5
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln(5)
Apply log rule: ln(ea)=aln(ex)=xx=ln(5)
x=ln(5)
Solve ex=−5:No Solution for x∈R
ex=−5
af(x) cannot be zero or negative for x∈RNoSolutionforx∈R
x=ln(5)
Verify Solutions:x=ln(5)True
Check the solutions by plugging them into ex+e−xex−e−x​=1312​
Remove the ones that don't agree with the equation.
Plug in x=ln(5):True
eln(5)+e−ln(5)eln(5)−e−ln(5)​=1312​
eln(5)+e−ln(5)eln(5)−e−ln(5)​=1312​
eln(5)+e−ln(5)eln(5)−e−ln(5)​
eln(5)=5
eln(5)
Apply log rule: aloga​(b)=b=5
e−ln(5)=5−1
e−ln(5)
Apply exponent rule: abc=(ab)c=(eln(5))−1
Apply log rule: aloga​(b)=beln(5)=5=5−1
=5+5−1eln(5)−e−ln(5)​
eln(5)=5
eln(5)
Apply log rule: aloga​(b)=b=5
e−ln(5)=5−1
e−ln(5)
Apply exponent rule: abc=(ab)c=(eln(5))−1
Apply log rule: aloga​(b)=beln(5)=5=5−1
=5+5−15−5−1​
Simplify
5+5−15−5−1​
Apply exponent rule: a−1=a1​5−1=51​=5+51​5−5−1​
Apply exponent rule: a−1=a1​5−1=51​=5+51​5−51​​
Join 5+51​:526​
5+51​
Convert element to fraction: 5=55⋅5​=55⋅5​+51​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=55⋅5+1​
5⋅5+1=26
5⋅5+1
Multiply the numbers: 5⋅5=25=25+1
Add the numbers: 25+1=26=26
=526​
=526​5−51​​
Join 5−51​:524​
5−51​
Convert element to fraction: 5=55⋅5​=55⋅5​−51​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=55⋅5−1​
5⋅5−1=24
5⋅5−1
Multiply the numbers: 5⋅5=25=25−1
Subtract the numbers: 25−1=24=24
=524​
=526​524​​
Divide fractions: dc​ba​​=b⋅ca⋅d​=5⋅2624⋅5​
Cancel the common factor: 5=2624​
Cancel the common factor: 2=1312​
=1312​
1312​=1312​
True
The solution isx=ln(5)
x=ln(5)

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(θ)= 5/7sin(θ)=75​8sin^2(x)+2sin(x)-1=08sin2(x)+2sin(x)−1=02sin^2(x)=5sin(x)-32sin2(x)=5sin(x)−3cos(x)cos(3x)=sin(x)sin(3x)cos(x)cos(3x)=sin(x)sin(3x)sec(3x)= 2/(sqrt(3))sec(3x)=3​2​

Frequently Asked Questions (FAQ)

  • What is the general solution for tanh(x)= 12/13 ?

    The general solution for tanh(x)= 12/13 is x=ln(5)
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024