Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sec^2(x)=8cos(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sec2(x)=8cos(x)

Solution

x=3π​+2πn,x=35π​+2πn
+1
Degrees
x=60∘+360∘n,x=300∘+360∘n
Solution steps
sec2(x)=8cos(x)
Subtract 8cos(x) from both sidessec2(x)−8cos(x)=0
Rewrite using trig identities
sec2(x)−8cos(x)
Use the basic trigonometric identity: cos(x)=sec(x)1​=sec2(x)−8⋅sec(x)1​
8⋅sec(x)1​=sec(x)8​
8⋅sec(x)1​
Multiply fractions: a⋅cb​=ca⋅b​=sec(x)1⋅8​
Multiply the numbers: 1⋅8=8=sec(x)8​
=sec2(x)−sec(x)8​
−sec(x)8​+sec2(x)=0
Solve by substitution
−sec(x)8​+sec2(x)=0
Let: sec(x)=u−u8​+u2=0
−u8​+u2=0:u=2,u=−1+3​i,u=−1−3​i
−u8​+u2=0
Multiply both sides by u
−u8​+u2=0
Multiply both sides by u−u8​u+u2u=0⋅u
Simplify
−u8​u+u2u=0⋅u
Simplify −u8​u:−8
−u8​u
Multiply fractions: a⋅cb​=ca⋅b​=−u8u​
Cancel the common factor: u=−8
Simplify u2u:u3
u2u
Apply exponent rule: ab⋅ac=ab+cu2u=u2+1=u2+1
Add the numbers: 2+1=3=u3
Simplify 0⋅u:0
0⋅u
Apply rule 0⋅a=0=0
−8+u3=0
−8+u3=0
−8+u3=0
Solve −8+u3=0:u=2,u=−1+3​i,u=−1−3​i
−8+u3=0
Move 8to the right side
−8+u3=0
Add 8 to both sides−8+u3+8=0+8
Simplifyu3=8
u3=8
For x3=f(a) the solutions are x=3f(a)​,3f(a)​2−1−3​i​,3f(a)​2−1+3​i​
u=38​,u=38​2−1+3​i​,u=38​2−1−3​i​
38​=2
38​
Factor the number: 8=23=323​
Apply radical rule: nan​=a323​=2=2
Simplify 38​2−1+3​i​:−1+3​i
38​2−1+3​i​
38​=2
38​
Factor the number: 8=23=323​
Apply radical rule: nan​=a323​=2=2
=2⋅2−1+3​i​
Multiply fractions: a⋅cb​=ca⋅b​=2(−1+3​i)⋅2​
Cancel the common factor: 2=−−1+3​i
Simplify 38​2−1−3​i​:−1−3​i
38​2−1−3​i​
38​=2
38​
Factor the number: 8=23=323​
Apply radical rule: nan​=a323​=2=2
=2⋅2−1−3​i​
Multiply fractions: a⋅cb​=ca⋅b​=2(−1−3​i)⋅2​
Cancel the common factor: 2=−−1−3​i
u=2,u=−1+3​i,u=−1−3​i
u=2,u=−1+3​i,u=−1−3​i
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of −u8​+u2 and compare to zero
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=2,u=−1+3​i,u=−1−3​i
Substitute back u=sec(x)sec(x)=2,sec(x)=−1+3​i,sec(x)=−1−3​i
sec(x)=2,sec(x)=−1+3​i,sec(x)=−1−3​i
sec(x)=2:x=3π​+2πn,x=35π​+2πn
sec(x)=2
General solutions for sec(x)=2
sec(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sec(x)1323​​2​2Undefined−2−2​−323​​​xπ67π​45π​34π​23π​35π​47π​611π​​sec(x)−1−323​​−2​−2Undefined22​323​​​​
x=3π​+2πn,x=35π​+2πn
x=3π​+2πn,x=35π​+2πn
sec(x)=−1+3​i:No Solution
sec(x)=−1+3​i
NoSolution
sec(x)=−1−3​i:No Solution
sec(x)=−1−3​i
NoSolution
Combine all the solutionsx=3π​+2πn,x=35π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

20arcsin(x)=5pi20arcsin(x)=5πsin(a)= 12/13sin(a)=1312​(tan(x)+1)(sec(x)-2)=0(tan(x)+1)(sec(x)−2)=0cot^2(x)=cot(x)cot2(x)=cot(x)-sin(x)-1=0−sin(x)−1=0

Frequently Asked Questions (FAQ)

  • What is the general solution for sec^2(x)=8cos(x) ?

    The general solution for sec^2(x)=8cos(x) is x= pi/3+2pin,x=(5pi)/3+2pin
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024