Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

4sin(x)=sqrt(3)csc(x)+2-2sqrt(3)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

4sin(x)=3​csc(x)+2−23​

Solution

x=34π​+2πn,x=35π​+2πn,x=6π​+2πn,x=65π​+2πn
+1
Degrees
x=240∘+360∘n,x=300∘+360∘n,x=30∘+360∘n,x=150∘+360∘n
Solution steps
4sin(x)=3​csc(x)+2−23​
Subtract 3​csc(x)+2−23​ from both sides4sin(x)−3​csc(x)−2+23​=0
Rewrite using trig identities
−2+23​+4sin(x)−csc(x)3​
Use the basic trigonometric identity: sin(x)=csc(x)1​=−2+23​+4⋅csc(x)1​−csc(x)3​
4⋅csc(x)1​=csc(x)4​
4⋅csc(x)1​
Multiply fractions: a⋅cb​=ca⋅b​=csc(x)1⋅4​
Multiply the numbers: 1⋅4=4=csc(x)4​
=−2+23​+csc(x)4​−3​csc(x)
−2+csc(x)4​+23​−csc(x)3​=0
Solve by substitution
−2+csc(x)4​+23​−csc(x)3​=0
Let: csc(x)=u−2+u4​+23​−u3​=0
−2+u4​+23​−u3​=0:u=−323​​,u=2
−2+u4​+23​−u3​=0
Multiply both sides by u
−2+u4​+23​−u3​=0
Multiply both sides by u−2u+u4​u+23​u−u3​u=0⋅u
Simplify
−2u+u4​u+23​u−u3​u=0⋅u
Simplify u4​u:4
u4​u
Multiply fractions: a⋅cb​=ca⋅b​=u4u​
Cancel the common factor: u=4
Simplify −u3​u:−3​u2
−u3​u
Apply exponent rule: ab⋅ac=ab+cuu=u1+1=−3​u1+1
Add the numbers: 1+1=2=−3​u2
Simplify 0⋅u:0
0⋅u
Apply rule 0⋅a=0=0
−2u+4+23​u−3​u2=0
−2u+4+23​u−3​u2=0
−2u+4+23​u−3​u2=0
Solve −2u+4+23​u−3​u2=0:u=−323​​,u=2
−2u+4+23​u−3​u2=0
Write in the standard form ax2+bx+c=0−3​u2+(−2+23​)u+4=0
Solve with the quadratic formula
−3​u2+(−2+23​)u+4=0
Quadratic Equation Formula:
For a=−3​,b=−2+23​,c=4u1,2​=2(−3​)−(−2+23​)±(−2+23​)2−4(−3​)⋅4​​
u1,2​=2(−3​)−(−2+23​)±(−2+23​)2−4(−3​)⋅4​​
(−2+23​)2−4(−3​)⋅4​=23​+2
(−2+23​)2−4(−3​)⋅4​
Apply rule −(−a)=a=(−2+23​)2+43​⋅4​
Multiply the numbers: 4⋅4=16=(23​−2)2+163​​
Expand (−2+23​)2+163​:16+83​
(−2+23​)2+163​
(−2+23​)2:16−83​
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2a=−2,b=23​
=(−2)2+2(−2)⋅23​+(23​)2
Simplify (−2)2+2(−2)⋅23​+(23​)2:16−83​
(−2)2+2(−2)⋅23​+(23​)2
Remove parentheses: (−a)=−a=(−2)2−2⋅2⋅23​+(23​)2
(−2)2=4
(−2)2
Apply exponent rule: (−a)n=an,if n is even(−2)2=22=22
22=4=4
2⋅2⋅23​=83​
2⋅2⋅23​
Multiply the numbers: 2⋅2⋅2=8=83​
(23​)2=12
(23​)2
Apply exponent rule: (a⋅b)n=anbn=22(3​)2
(3​)2:3
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
=22⋅3
22=4=4⋅3
Multiply the numbers: 4⋅3=12=12
=4−83​+12
Add the numbers: 4+12=16=16−83​
=16−83​
=16−83​+163​
Add similar elements: −83​+163​=83​=16+83​
=16+83​​
=12+83​+4​
=4⋅3+83​+4​
=(4​)2(3​)2+83​+(4​)2​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: nan​=a22​=2=2
=22(3​)2+83​+22​
2⋅23​⋅2=83​
2⋅23​⋅2
Multiply the numbers: 2⋅2⋅2=8=83​
=(23​)2+2⋅23​⋅2+22​
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2(23​)2+2⋅23​⋅2+22=(23​+2)2=(23​+2)2​
Apply radical rule: nan​=a(23​+2)2​=23​+2=23​+2
u1,2​=2(−3​)−(−2+23​)±(23​+2)​
Separate the solutionsu1​=2(−3​)−(−2+23​)+23​+2​,u2​=2(−3​)−(−2+23​)−(23​+2)​
u=2(−3​)−(−2+23​)+23​+2​:−323​​
2(−3​)−(−2+23​)+23​+2​
Remove parentheses: (−a)=−a=−23​−(−2+23​)+23​+2​
Apply the fraction rule: −ba​=−ba​=−23​−(−2+23​)+23​+2​
Expand −(−2+23​)+23​+2:4
−(−2+23​)+23​+2
−(−2+23​):2−23​
−(−2+23​)
Distribute parentheses=−(−2)−(23​)
Apply minus-plus rules−(−a)=a,−(a)=−a=2−23​
=2−23​+23​+2
Simplify 2−23​+23​+2:4
2−23​+23​+2
Add similar elements: −23​+23​=0=2+2
Add the numbers: 2+2=4=4
=4
=−23​4​
Divide the numbers: 24​=2=−3​2​
Rationalize −3​2​:−323​​
−3​2​
Multiply by the conjugate 3​3​​=−3​3​23​​
3​3​=3
3​3​
Apply radical rule: a​a​=a3​3​=3=3
=−323​​
=−323​​
u=2(−3​)−(−2+23​)−(23​+2)​:2
2(−3​)−(−2+23​)−(23​+2)​
Remove parentheses: (−a)=−a=−23​−(−2+23​)−(23​+2)​
Apply the fraction rule: −b−a​=ba​−(−2+23​)−(23​+2)=−((23​+2)+(23​−2))=23​(23​+2)+(23​−2)​
Remove parentheses: (a)=a=23​23​+2+23​−2​
23​+2+23​−2=43​
23​+2+23​−2
Add similar elements: 23​+23​=43​=43​+2−2
2−2=0=43​
=23​43​​
Divide the numbers: 24​=2=3​23​​
Cancel the common factor: 3​=2
The solutions to the quadratic equation are:u=−323​​,u=2
u=−323​​,u=2
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of −2+u4​+23​−u3​ and compare to zero
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=−323​​,u=2
Substitute back u=csc(x)csc(x)=−323​​,csc(x)=2
csc(x)=−323​​,csc(x)=2
csc(x)=−323​​:x=34π​+2πn,x=35π​+2πn
csc(x)=−323​​
General solutions for csc(x)=−323​​
csc(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​csc(x)Undefiend22​323​​1323​​2​2​xπ67π​45π​34π​23π​35π​47π​611π​​csc(x)Undefiend−2−2​−323​​−1−323​​−2​−2​​
x=34π​+2πn,x=35π​+2πn
x=34π​+2πn,x=35π​+2πn
csc(x)=2:x=6π​+2πn,x=65π​+2πn
csc(x)=2
General solutions for csc(x)=2
csc(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​csc(x)Undefiend22​323​​1323​​2​2​xπ67π​45π​34π​23π​35π​47π​611π​​csc(x)Undefiend−2−2​−323​​−1−323​​−2​−2​​
x=6π​+2πn,x=65π​+2πn
x=6π​+2πn,x=65π​+2πn
Combine all the solutionsx=34π​+2πn,x=35π​+2πn,x=6π​+2πn,x=65π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

solvefor x,sin(x)+2cos(2y)=1solveforx,sin(x)+2cos(2y)=13cos^2(θ)+2cos(θ)=03cos2(θ)+2cos(θ)=0sin(θ)+1-cos(θ)=0sin(θ)+1−cos(θ)=0sin(x/2)=-cos(x/2)sin(2x​)=−cos(2x​)2cos^2(2x)-1=02cos2(2x)−1=0
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024