Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

3tanh(2θ)=5sech(θ)+1

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

3tanh(2θ)=5sech(θ)+1

Solution

θ=ln(4.82043…)
+1
Degrees
θ=90.11846…∘
Solution steps
3tanh(2θ)=5sech(θ)+1
Rewrite using trig identities
3tanh(2θ)=5sech(θ)+1
Use the Hyperbolic identity: tanh(x)=ex+e−xex−e−x​3⋅e2θ+e−2θe2θ−e−2θ​=5sech(θ)+1
Use the Hyperbolic identity: sech(x)=ex+e−x2​3⋅e2θ+e−2θe2θ−e−2θ​=5⋅eθ+e−θ2​+1
3⋅e2θ+e−2θe2θ−e−2θ​=5⋅eθ+e−θ2​+1
3⋅e2θ+e−2θe2θ−e−2θ​=5⋅eθ+e−θ2​+1:θ=ln(4.82043…)
3⋅e2θ+e−2θe2θ−e−2θ​=5⋅eθ+e−θ2​+1
Apply exponent rules
3⋅e2θ+e−2θe2θ−e−2θ​=5⋅eθ+e−θ2​+1
Apply exponent rule: abc=(ab)ce2θ=(eθ)2,e−2θ=(eθ)−2,e−θ=(eθ)−13⋅(eθ)2+(eθ)−2(eθ)2−(eθ)−2​=5⋅eθ+(eθ)−12​+1
3⋅(eθ)2+(eθ)−2(eθ)2−(eθ)−2​=5⋅eθ+(eθ)−12​+1
Rewrite the equation with eθ=u3⋅(u)2+(u)−2(u)2−(u)−2​=5⋅u+(u)−12​+1
Solve 3⋅u2+u−2u2−u−2​=5⋅u+u−12​+1:u≈−0.45284…,u≈4.82043…
3⋅u2+u−2u2−u−2​=5⋅u+u−12​+1
Refineu4+13(u4−1)​=u2+110u​+1
Multiply by LCM
u4+13(u4−1)​=u2+110u​+1
Find Least Common Multiplier of u4+1,u2+1:(u2+1)(u2+2​u+1)(u2−2​u+1)
u4+1,u2+1
Lowest Common Multiplier (LCM)
Factor the expressions
Factor u4+1:(u2+2​u+1)(u2−2​u+1)
u4+1
u4+1=(u2+2​u+1)(u2−2​u+1)=(u2+2​u+1)(u2−2​u+1)
Compute an expression comprised of factors that appear either in (u2+2​u+1)(u2−2​u+1) or u2+1=(u2+1)(u2+2​u+1)(u2−2​u+1)
Multiply by LCM=(u2+1)(u2+2​u+1)(u2−2​u+1)u4+13(u4−1)​(u2+1)(u2+2​u+1)(u2−2​u+1)=u2+110u​(u2+1)(u2+2​u+1)(u2−2​u+1)+1⋅(u2+1)(u2+2​u+1)(u2−2​u+1)
Simplify
u4+13(u4−1)​(u2+1)(u2+2​u+1)(u2−2​u+1)=u2+110u​(u2+1)(u2+2​u+1)(u2−2​u+1)+1⋅(u2+1)(u2+2​u+1)(u2−2​u+1)
Simplify u4+13(u4−1)​(u2+1)(u2+2​u+1)(u2−2​u+1):3(u+1)(u−1)(u2+1)2
u4+13(u4−1)​(u2+1)(u2+2​u+1)(u2−2​u+1)
Multiply fractions: a⋅cb​=ca⋅b​=u4+13(u4−1)(u2+1)(u2+2​u+1)(u2−2​u+1)​
Factor 3(u4−1)(u2+1)(u2+2​u+1)(u2−2​u+1):3(u+1)(u−1)(u2+1)2(u2+2​u+1)(u2−2​u+1)
3(u4−1)(u2+1)(u2+2​u+1)(u2−2​u+1)
Factor u4−1:(u2+1)(u+1)(u−1)
u4−1
Rewrite u4−1 as (u2)2−12
u4−1
Rewrite 1 as 12=u4−12
Apply exponent rule: abc=(ab)cu4=(u2)2=(u2)2−12
=(u2)2−12
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(u2)2−12=(u2+1)(u2−1)=(u2+1)(u2−1)
Factor u2−1:(u+1)(u−1)
u2−1
Rewrite 1 as 12=u2−12
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)u2−12=(u+1)(u−1)=(u+1)(u−1)
=(u2+1)(u+1)(u−1)
=3(u+1)(u−1)(u2+1)2(u2+2​u+1)(u2−2​u+1)
=u4+13(u+1)(u−1)(u2+1)2(u2+2​u+1)(u2−2​u+1)​
u4+1=(u2+2​u+1)(u2−2​u+1)=(u2+2​u+1)(u2−2​u+1)3(u+1)(u−1)(u2+1)2(u2+2​u+1)(u2−2​u+1)​
Cancel (u2+2​u+1)(u2−2​u+1)3(u+1)(u−1)(u2+1)2(u2+2​u+1)(u2−2​u+1)​:3(u+1)(u−1)(u2+1)2
(u2+2​u+1)(u2−2​u+1)3(u+1)(u−1)(u2+1)2(u2+2​u+1)(u2−2​u+1)​
Cancel the common factor: u2+2​u+1=u2−2​u+13(u+1)(u−1)(u2+1)2(u2−2​u+1)​
Cancel the common factor: u2−2​u+1=3(u+1)(u−1)(u2+1)2
=3(u+1)(u−1)(u2+1)2
Simplify u2+110u​(u2+1)(u2+2​u+1)(u2−2​u+1):10u(u2+2​u+1)(u2−2​u+1)
u2+110u​(u2+1)(u2+2​u+1)(u2−2​u+1)
Multiply fractions: a⋅cb​=ca⋅b​=u2+110u(u2+1)(u2+2​u+1)(u2−2​u+1)​
Cancel the common factor: u2+1=10u(u2+2​u+1)(u2−2​u+1)
Simplify 1⋅(u2+1)(u2+2​u+1)(u2−2​u+1):(u2+1)(u2+2​u+1)(u2−2​u+1)
1⋅(u2+1)(u2+2​u+1)(u2−2​u+1)
Multiply: 1⋅(u2+1)=(u2+1)=(u2+1)(u2+2​u+1)(u2−2​u+1)
3(u+1)(u−1)(u2+1)2=10u(u2+2​u+1)(u2−2​u+1)+(u2+1)(u2+2​u+1)(u2−2​u+1)
3(u+1)(u−1)(u2+1)2=10u(u2+2​u+1)(u2−2​u+1)+(u2+1)(u2+2​u+1)(u2−2​u+1)
3(u+1)(u−1)(u2+1)2=10u(u2+2​u+1)(u2−2​u+1)+(u2+1)(u2+2​u+1)(u2−2​u+1)
Solve 3(u+1)(u−1)(u2+1)2=10u(u2+2​u+1)(u2−2​u+1)+(u2+1)(u2+2​u+1)(u2−2​u+1):u≈−0.45284…,u≈4.82043…
3(u+1)(u−1)(u2+1)2=10u(u2+2​u+1)(u2−2​u+1)+(u2+1)(u2+2​u+1)(u2−2​u+1)
Expand 3(u+1)(u−1)(u2+1)2:3u6+3u4−3u2−3
3(u+1)(u−1)(u2+1)2
(u2+1)2=u4+2u2+1
(u2+1)2
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2a=u2,b=1
=(u2)2+2u2⋅1+12
Simplify (u2)2+2u2⋅1+12:u4+2u2+1
(u2)2+2u2⋅1+12
Apply rule 1a=112=1=(u2)2+2⋅1⋅u2+1
(u2)2=u4
(u2)2
Apply exponent rule: (ab)c=abc=u2⋅2
Multiply the numbers: 2⋅2=4=u4
2u2⋅1=2u2
2u2⋅1
Multiply the numbers: 2⋅1=2=2u2
=u4+2u2+1
=u4+2u2+1
=3(u+1)(u−1)(u4+2u2+1)
Expand (u+1)(u−1):u2−1
(u+1)(u−1)
Apply Difference of Two Squares Formula: (a+b)(a−b)=a2−b2a=u,b=1=u2−12
Apply rule 1a=112=1=u2−1
=3(u2−1)(u4+2u2+1)
Expand (u2−1)(u4+2u2+1):u6+u4−u2−1
(u2−1)(u4+2u2+1)
Distribute parentheses=u2u4+u2⋅2u2+u2⋅1+(−1)u4+(−1)⋅2u2+(−1)⋅1
Apply minus-plus rules+(−a)=−a=u4u2+2u2u2+1⋅u2−1⋅u4−1⋅2u2−1⋅1
Simplify u4u2+2u2u2+1⋅u2−1⋅u4−1⋅2u2−1⋅1:u6+u4−u2−1
u4u2+2u2u2+1⋅u2−1⋅u4−1⋅2u2−1⋅1
u4u2=u6
u4u2
Apply exponent rule: ab⋅ac=ab+cu4u2=u4+2=u4+2
Add the numbers: 4+2=6=u6
2u2u2=2u4
2u2u2
Apply exponent rule: ab⋅ac=ab+cu2u2=u2+2=2u2+2
Add the numbers: 2+2=4=2u4
1⋅u2=u2
1⋅u2
Multiply: 1⋅u2=u2=u2
1⋅u4=u4
1⋅u4
Multiply: 1⋅u4=u4=u4
1⋅2u2=2u2
1⋅2u2
Multiply the numbers: 1⋅2=2=2u2
1⋅1=1
1⋅1
Multiply the numbers: 1⋅1=1=1
=u6+2u4+u2−u4−2u2−1
Group like terms=u6+2u4−u4+u2−2u2−1
Add similar elements: u2−2u2=−u2=u6+2u4−u4−u2−1
Add similar elements: 2u4−u4=u4=u6+u4−u2−1
=u6+u4−u2−1
=3(u6+u4−u2−1)
Expand 3(u6+u4−u2−1):3u6+3u4−3u2−3
3(u6+u4−u2−1)
Distribute parentheses=3u6+3u4+3(−u2)+3(−1)
Apply minus-plus rules+(−a)=−a=3u6+3u4−3u2−3⋅1
Multiply the numbers: 3⋅1=3=3u6+3u4−3u2−3
=3u6+3u4−3u2−3
Expand 10u(u2+2​u+1)(u2−2​u+1)+(u2+1)(u2+2​u+1)(u2−2​u+1):10u5+10u+u6+u4+u2+1
10u(u2+2​u+1)(u2−2​u+1)+(u2+1)(u2+2​u+1)(u2−2​u+1)
Expand 10u(u2+2​u+1)(u2−2​u+1):10u5+10u
Expand (u2+2​u+1)(u2−2​u+1):u4+1
(u2+2​u+1)(u2−2​u+1)
Distribute parentheses=u2u2+u2(−2​u)+u2⋅1+2​uu2+2​u(−2​u)+2​u⋅1+1⋅u2+1⋅(−2​u)+1⋅1
Apply minus-plus rules+(−a)=−a=u2u2−2​u2u+1⋅u2+2​u2u−2​2​uu+1⋅2​u+1⋅u2−1⋅2​u+1⋅1
Simplify u2u2−2​u2u+1⋅u2+2​u2u−2​2​uu+1⋅2​u+1⋅u2−1⋅2​u+1⋅1:u4+1
u2u2−2​u2u+1⋅u2+2​u2u−2​2​uu+1⋅2​u+1⋅u2−1⋅2​u+1⋅1
Group like terms=u2u2−2​u2u+1⋅u2+2​u2u+1⋅u2−2​2​uu+1⋅2​u−1⋅2​u+1⋅1
Add similar elements: 1⋅2​u−1⋅2​u=0=u2u2−2​u2u+1⋅u2+2​u2u+1⋅u2−2​2​uu+1⋅1
Add similar elements: −2​u2u+2​u2u=0=u2u2+1⋅u2+1⋅u2−2​2​uu+1⋅1
Add similar elements: 1⋅u2+1⋅u2=2u2=u2u2+2u2−2​2​uu+1⋅1
u2u2=u4
u2u2
Apply exponent rule: ab⋅ac=ab+cu2u2=u2+2=u2+2
Add the numbers: 2+2=4=u4
2​2​uu=2u2
2​2​uu
Apply radical rule: a​a​=a2​2​=2=2uu
Apply exponent rule: ab⋅ac=ab+cuu=u1+1=2u1+1
Add the numbers: 1+1=2=2u2
1⋅1=1
1⋅1
Multiply the numbers: 1⋅1=1=1
=u4+2u2−2u2+1
Add similar elements: 2u2−2u2=0=u4+1
=u4+1
=10u(u4+1)
Expand 10u(u4+1):10u5+10u
10u(u4+1)
Apply the distributive law: a(b+c)=ab+aca=10u,b=u4,c=1=10uu4+10u⋅1
=10u4u+10⋅1⋅u
Simplify 10u4u+10⋅1⋅u:10u5+10u
10u4u+10⋅1⋅u
10u4u=10u5
10u4u
Apply exponent rule: ab⋅ac=ab+cu4u=u4+1=10u4+1
Add the numbers: 4+1=5=10u5
10⋅1⋅u=10u
10⋅1⋅u
Multiply the numbers: 10⋅1=10=10u
=10u5+10u
=10u5+10u
=10u5+10u
=10u5+10u+(u2+1)(u2+2​u+1)(u2−2​u+1)
Expand (u2+1)(u2+2​u+1)(u2−2​u+1):u6+u4+u2+1
Expand (u2+1)(u2+2​u+1):u4+2​u3+2u2+2​u+1
(u2+1)(u2+2​u+1)
Distribute parentheses=u2u2+u22​u+u2⋅1+1⋅u2+1⋅2​u+1⋅1
=u2u2+2​u2u+1⋅u2+1⋅u2+1⋅2​u+1⋅1
Simplify u2u2+2​u2u+1⋅u2+1⋅u2+1⋅2​u+1⋅1:u4+2​u3+2u2+2​u+1
u2u2+2​u2u+1⋅u2+1⋅u2+1⋅2​u+1⋅1
Add similar elements: 1⋅u2+1⋅u2=2u2=u2u2+2​u2u+2u2+1⋅2​u+1⋅1
u2u2=u4
u2u2
Apply exponent rule: ab⋅ac=ab+cu2u2=u2+2=u2+2
Add the numbers: 2+2=4=u4
2​u2u=2​u3
2​u2u
Apply exponent rule: ab⋅ac=ab+cu2u=u2+1=2​u2+1
Add the numbers: 2+1=3=2​u3
1⋅2​u=2​u
1⋅2​u
Multiply: 1⋅2​=2​=2​u
1⋅1=1
1⋅1
Multiply the numbers: 1⋅1=1=1
=u4+2​u3+2u2+2​u+1
=u4+2​u3+2u2+2​u+1
=(u4+2​u3+2u2+2​u+1)(u2−2​u+1)
Expand (u4+2​u3+2u2+2​u+1)(u2−2​u+1):u6+u4+u2+1
(u4+2​u3+2u2+2​u+1)(u2−2​u+1)
Distribute parentheses=u4u2+u4(−2​u)+u4⋅1+2​u3u2+2​u3(−2​u)+2​u3⋅1+2u2u2+2u2(−2​u)+2u2⋅1+2​uu2+2​u(−2​u)+2​u⋅1+1⋅u2+1⋅(−2​u)+1⋅1
Apply minus-plus rules+(−a)=−a=u4u2−2​u4u+1⋅u4+2​u3u2−2​2​u3u+1⋅2​u3+2u2u2−22​u2u+2⋅1⋅u2+2​u2u−2​2​uu+1⋅2​u+1⋅u2−1⋅2​u+1⋅1
Simplify u4u2−2​u4u+1⋅u4+2​u3u2−2​2​u3u+1⋅2​u3+2u2u2−22​u2u+2⋅1⋅u2+2​u2u−2​2​uu+1⋅2​u+1⋅u2−1⋅2​u+1⋅1:u6+u4+u2+1
u4u2−2​u4u+1⋅u4+2​u3u2−2​2​u3u+1⋅2​u3+2u2u2−22​u2u+2⋅1⋅u2+2​u2u−2​2​uu+1⋅2​u+1⋅u2−1⋅2​u+1⋅1
Group like terms=u4u2−2​u4u+1⋅u4+2​u3u2−2​2​u3u+1⋅2​u3+2u2u2−22​u2u+2⋅1⋅u2+2​u2u+1⋅u2−2​2​uu+1⋅2​u−1⋅2​u+1⋅1
Add similar elements: 1⋅2​u−1⋅2​u=0=u4u2−2​u4u+1⋅u4+2​u3u2−2​2​u3u+1⋅2​u3+2u2u2−22​u2u+2⋅1⋅u2+2​u2u+1⋅u2−2​2​uu+1⋅1
Add similar elements: −22​u2u+2​u2u=−2​u2u=u4u2−2​u4u+1⋅u4+2​u3u2−2​2​u3u+1⋅2​u3+2u2u2−2​u2u+2⋅1⋅u2+1⋅u2−2​2​uu+1⋅1
u4u2=u6
u4u2
Apply exponent rule: ab⋅ac=ab+cu4u2=u4+2=u4+2
Add the numbers: 4+2=6=u6
2​u4u=2​u5
2​u4u
Apply exponent rule: ab⋅ac=ab+cu4u=u4+1=2​u4+1
Add the numbers: 4+1=5=2​u5
1⋅u4=u4
1⋅u4
Multiply: 1⋅u4=u4=u4
2​u3u2=2​u5
2​u3u2
Apply exponent rule: ab⋅ac=ab+cu3u2=u3+2=2​u3+2
Add the numbers: 3+2=5=2​u5
2​2​u3u=2u4
2​2​u3u
Apply radical rule: a​a​=a2​2​=2=2u3u
Apply exponent rule: ab⋅ac=ab+cu3u=u3+1=2u3+1
Add the numbers: 3+1=4=2u4
1⋅2​u3=2​u3
1⋅2​u3
Multiply: 1⋅2​=2​=2​u3
2u2u2=2u4
2u2u2
Apply exponent rule: ab⋅ac=ab+cu2u2=u2+2=2u2+2
Add the numbers: 2+2=4=2u4
2​u2u=2​u3
2​u2u
Apply exponent rule: ab⋅ac=ab+cu2u=u2+1=2​u2+1
Add the numbers: 2+1=3=2​u3
2⋅1⋅u2=2u2
2⋅1⋅u2
Multiply the numbers: 2⋅1=2=2u2
1⋅u2=u2
1⋅u2
Multiply: 1⋅u2=u2=u2
2​2​uu=2u2
2​2​uu
Apply radical rule: a​a​=a2​2​=2=2uu
Apply exponent rule: ab⋅ac=ab+cuu=u1+1=2u1+1
Add the numbers: 1+1=2=2u2
1⋅1=1
1⋅1
Multiply the numbers: 1⋅1=1=1
=u6−2​u5+u4+2​u5−2u4+2​u3+2u4−2​u3+2u2+u2−2u2+1
Group like terms=u6−2​u5+2​u5+u4−2u4+2u4+2​u3−2​u3+2u2+u2−2u2+1
Add similar elements: 2​u3−2​u3=0=u6−2​u5+2​u5+u4−2u4+2u4+2u2+u2−2u2+1
Add similar elements: −2​u5+2​u5=0=u6+u4−2u4+2u4+2u2+u2−2u2+1
Add similar elements: 2u2+u2−2u2=u2=u6+u4−2u4+2u4+u2+1
Add similar elements: u4−2u4+2u4=u4=u6+u4+u2+1
=u6+u4+u2+1
=u6+u4+u2+1
=10u5+10u+u6+u4+u2+1
3u6+3u4−3u2−3=10u5+10u+u6+u4+u2+1
Switch sides10u5+10u+u6+u4+u2+1=3u6+3u4−3u2−3
Subtract 3u6+3u4−3u2−3 from both sides10u5+10u+u6+u4+u2+1−(3u6+3u4−3u2−3)=3u6+3u4−3u2−3−(3u6+3u4−3u2−3)
Simplify
10u5+10u+u6+u4+u2+1−(3u6+3u4−3u2−3)=3u6+3u4−3u2−3−(3u6+3u4−3u2−3)
Simplify 10u5+10u+u6+u4+u2+1−(3u6+3u4−3u2−3):−2u6+10u5−2u4+4u2+10u+4
10u5+10u+u6+u4+u2+1−(3u6+3u4−3u2−3)
−(3u6+3u4−3u2−3):−3u6−3u4+3u2+3
−(3u6+3u4−3u2−3)
Distribute parentheses=−(3u6)−(3u4)−(−3u2)−(−3)
Apply minus-plus rules−(−a)=a,−(a)=−a=−3u6−3u4+3u2+3
=10u5+10u+u6+u4+u2+1−3u6−3u4+3u2+3
Simplify 10u5+10u+u6+u4+u2+1−3u6−3u4+3u2+3:−2u6+10u5−2u4+4u2+10u+4
10u5+10u+u6+u4+u2+1−3u6−3u4+3u2+3
Group like terms=u6−3u6+10u5+u4−3u4+u2+3u2+10u+1+3
Add similar elements: u2+3u2=4u2=u6−3u6+10u5+u4−3u4+4u2+10u+1+3
Add similar elements: u4−3u4=−2u4=u6−3u6+10u5−2u4+4u2+10u+1+3
Add similar elements: u6−3u6=−2u6=−2u6+10u5−2u4+4u2+10u+1+3
Add the numbers: 1+3=4=−2u6+10u5−2u4+4u2+10u+4
=−2u6+10u5−2u4+4u2+10u+4
Simplify 3u6+3u4−3u2−3−(3u6+3u4−3u2−3):0
3u6+3u4−3u2−3−(3u6+3u4−3u2−3)
Add similar elements: 3u6+3u4−3u2−3−(3u6+3u4−3u2−3)=0
=0
−2u6+10u5−2u4+4u2+10u+4=0
−2u6+10u5−2u4+4u2+10u+4=0
Find one solution for −2u6+10u5−2u4+4u2+10u+4=0 using Newton-Raphson:u≈−0.45284…
−2u6+10u5−2u4+4u2+10u+4=0
Newton-Raphson Approximation Definition
f(u)=−2u6+10u5−2u4+4u2+10u+4
Find f′(u):−12u5+50u4−8u3+8u+10
dud​(−2u6+10u5−2u4+4u2+10u+4)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=−dud​(2u6)+dud​(10u5)−dud​(2u4)+dud​(4u2)+dud​(10u)+dud​(4)
dud​(2u6)=12u5
dud​(2u6)
Take the constant out: (a⋅f)′=a⋅f′=2dud​(u6)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=2⋅6u6−1
Simplify=12u5
dud​(10u5)=50u4
dud​(10u5)
Take the constant out: (a⋅f)′=a⋅f′=10dud​(u5)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=10⋅5u5−1
Simplify=50u4
dud​(2u4)=8u3
dud​(2u4)
Take the constant out: (a⋅f)′=a⋅f′=2dud​(u4)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=2⋅4u4−1
Simplify=8u3
dud​(4u2)=8u
dud​(4u2)
Take the constant out: (a⋅f)′=a⋅f′=4dud​(u2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=4⋅2u2−1
Simplify=8u
dud​(10u)=10
dud​(10u)
Take the constant out: (a⋅f)′=a⋅f′=10dudu​
Apply the common derivative: dudu​=1=10⋅1
Simplify=10
dud​(4)=0
dud​(4)
Derivative of a constant: dxd​(a)=0=0
=−12u5+50u4−8u3+8u+10+0
Simplify=−12u5+50u4−8u3+8u+10
Let u0​=0Compute un+1​ until Δun+1​<0.000001
u1​=−0.4:Δu1​=0.4
f(u0​)=−2⋅06+10⋅05−2⋅04+4⋅02+10⋅0+4=4f′(u0​)=−12⋅05+50⋅04−8⋅03+8⋅0+10=10u1​=−0.4
Δu1​=∣−0.4−0∣=0.4Δu1​=0.4
u2​=−0.45487…:Δu2​=0.05487…
f(u1​)=−2(−0.4)6+10(−0.4)5−2(−0.4)4+4(−0.4)2+10(−0.4)+4=0.478208f′(u1​)=−12(−0.4)5+50(−0.4)4−8(−0.4)3+8(−0.4)+10=8.71488u2​=−0.45487…
Δu2​=∣−0.45487…−(−0.4)∣=0.05487…Δu2​=0.05487…
u3​=−0.45285…:Δu3​=0.00201…
f(u2​)=−2(−0.45487…)6+10(−0.45487…)5−2(−0.45487…)4+4(−0.45487…)2+10(−0.45487…)+4=−0.01916…f′(u2​)=−12(−0.45487…)5+50(−0.45487…)4−8(−0.45487…)3+8(−0.45487…)+10=9.48821…u3​=−0.45285…
Δu3​=∣−0.45285…−(−0.45487…)∣=0.00201…Δu3​=0.00201…
u4​=−0.45284…:Δu4​=3.93806E−6
f(u3​)=−2(−0.45285…)6+10(−0.45285…)5−2(−0.45285…)4+4(−0.45285…)2+10(−0.45285…)+4=−0.00003…f′(u3​)=−12(−0.45285…)5+50(−0.45285…)4−8(−0.45285…)3+8(−0.45285…)+10=9.45147…u4​=−0.45284…
Δu4​=∣−0.45284…−(−0.45285…)∣=3.93806E−6Δu4​=3.93806E−6
u5​=−0.45284…:Δu5​=1.47831E−11
f(u4​)=−2(−0.45284…)6+10(−0.45284…)5−2(−0.45284…)4+4(−0.45284…)2+10(−0.45284…)+4=−1.39721E−10f′(u4​)=−12(−0.45284…)5+50(−0.45284…)4−8(−0.45284…)3+8(−0.45284…)+10=9.45140…u5​=−0.45284…
Δu5​=∣−0.45284…−(−0.45284…)∣=1.47831E−11Δu5​=1.47831E−11
u≈−0.45284…
Apply long division:u+0.45284…−2u6+10u5−2u4+4u2+10u+4​=−2u5+10.90569…u4−6.93863…u3+3.14215…u2+2.57708…u+8.83297…
−2u5+10.90569…u4−6.93863…u3+3.14215…u2+2.57708…u+8.83297…≈0
Find one solution for −2u5+10.90569…u4−6.93863…u3+3.14215…u2+2.57708…u+8.83297…=0 using Newton-Raphson:u≈4.82043…
−2u5+10.90569…u4−6.93863…u3+3.14215…u2+2.57708…u+8.83297…=0
Newton-Raphson Approximation Definition
f(u)=−2u5+10.90569…u4−6.93863…u3+3.14215…u2+2.57708…u+8.83297…
Find f′(u):−10u4+43.62278…u3−20.81589…u2+6.28430…u+2.57708…
dud​(−2u5+10.90569…u4−6.93863…u3+3.14215…u2+2.57708…u+8.83297…)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=−dud​(2u5)+dud​(10.90569…u4)−dud​(6.93863…u3)+dud​(3.14215…u2)+dud​(2.57708…u)+dud​(8.83297…)
dud​(2u5)=10u4
dud​(2u5)
Take the constant out: (a⋅f)′=a⋅f′=2dud​(u5)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=2⋅5u5−1
Simplify=10u4
dud​(10.90569…u4)=43.62278…u3
dud​(10.90569…u4)
Take the constant out: (a⋅f)′=a⋅f′=10.90569…dud​(u4)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=10.90569…⋅4u4−1
Simplify=43.62278…u3
dud​(6.93863…u3)=20.81589…u2
dud​(6.93863…u3)
Take the constant out: (a⋅f)′=a⋅f′=6.93863…dud​(u3)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=6.93863…⋅3u3−1
Simplify=20.81589…u2
dud​(3.14215…u2)=6.28430…u
dud​(3.14215…u2)
Take the constant out: (a⋅f)′=a⋅f′=3.14215…dud​(u2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=3.14215…⋅2u2−1
Simplify=6.28430…u
dud​(2.57708…u)=2.57708…
dud​(2.57708…u)
Take the constant out: (a⋅f)′=a⋅f′=2.57708…dudu​
Apply the common derivative: dudu​=1=2.57708…⋅1
Simplify=2.57708…
dud​(8.83297…)=0
dud​(8.83297…)
Derivative of a constant: dxd​(a)=0=0
=−10u4+43.62278…u3−20.81589…u2+6.28430…u+2.57708…+0
Simplify=−10u4+43.62278…u3−20.81589…u2+6.28430…u+2.57708…
Let u0​=−2Compute un+1​ until Δun+1​<0.000001
u1​=−1.48484…:Δu1​=0.51515…
f(u0​)=−2(−2)5+10.90569…(−2)4−6.93863…(−2)3+3.14215…(−2)2+2.57708…(−2)+8.83297…=310.24761…f′(u0​)=−10(−2)4+43.62278…(−2)3−20.81589…(−2)2+6.28430…(−2)+2.57708…=−602.23740…u1​=−1.48484…
Δu1​=∣−1.48484…−(−2)∣=0.51515…Δu1​=0.51515…
u2​=−1.06652…:Δu2​=0.41831…
f(u1​)=−2(−1.48484…)5+10.90569…(−1.48484…)4−6.93863…(−1.48484…)3+3.14215…(−1.48484…)2+2.57708…(−1.48484…)+8.83297…=102.09660…f′(u1​)=−10(−1.48484…)4+43.62278…(−1.48484…)3−20.81589…(−1.48484…)2+6.28430…(−1.48484…)+2.57708…=−244.06592…u2​=−1.06652…
Δu2​=∣−1.06652…−(−1.48484…)∣=0.41831…Δu2​=0.41831…
u3​=−0.69341…:Δu3​=0.37311…
f(u2​)=−2(−1.06652…)5+10.90569…(−1.06652…)4−6.93863…(−1.06652…)3+3.14215…(−1.06652…)2+2.57708…(−1.06652…)+8.83297…=34.94642…f′(u2​)=−10(−1.06652…)4+43.62278…(−1.06652…)3−20.81589…(−1.06652…)2+6.28430…(−1.06652…)+2.57708…=−93.66242…u3​=−0.69341…
Δu3​=∣−0.69341…−(−1.06652…)∣=0.37311…Δu3​=0.37311…
u4​=−0.21473…:Δu4​=0.47868…
f(u3​)=−2(−0.69341…)5+10.90569…(−0.69341…)4−6.93863…(−0.69341…)3+3.14215…(−0.69341…)2+2.57708…(−0.69341…)+8.83297…=13.71217…f′(u3​)=−10(−0.69341…)4+43.62278…(−0.69341…)3−20.81589…(−0.69341…)2+6.28430…(−0.69341…)+2.57708…=−28.64562…u4​=−0.21473…
Δu4​=∣−0.21473…−(−0.69341…)∣=0.47868…Δu4​=0.47868…
u5​=45.73243…:Δu5​=45.94716…
f(u4​)=−2(−0.21473…)5+10.90569…(−0.21473…)4−6.93863…(−0.21473…)3+3.14215…(−0.21473…)2+2.57708…(−0.21473…)+8.83297…=8.51727…f′(u4​)=−10(−0.21473…)4+43.62278…(−0.21473…)3−20.81589…(−0.21473…)2+6.28430…(−0.21473…)+2.57708…=−0.18537…u5​=45.73243…
Δu5​=∣45.73243…−(−0.21473…)∣=45.94716…Δu5​=45.94716…
u6​=36.82019…:Δu6​=8.91223…
f(u5​)=−2⋅45.73243…5+10.90569…⋅45.73243…4−6.93863…⋅45.73243…3+3.14215…⋅45.73243…2+2.57708…⋅45.73243…+8.83297…=−353037842.88944…f′(u5​)=−10⋅45.73243…4+43.62278…⋅45.73243…3−20.81589…⋅45.73243…2+6.28430…⋅45.73243…+2.57708…=−39612709.25671…u6​=36.82019…
Δu6​=∣36.82019…−45.73243…∣=8.91223…Δu6​=8.91223…
u7​=29.69478…:Δu7​=7.12541…
f(u6​)=−2⋅36.82019…5+10.90569…⋅36.82019…4−6.93863…⋅36.82019…3+3.14215…⋅36.82019…2+2.57708…⋅36.82019…+8.83297…=−115648118.63564…f′(u6​)=−10⋅36.82019…4+43.62278…⋅36.82019…3−20.81589…⋅36.82019…2+6.28430…⋅36.82019…+2.57708…=−16230376.60275…u7​=29.69478…
Δu7​=∣29.69478…−36.82019…∣=7.12541…Δu7​=7.12541…
u8​=24.00013…:Δu8​=5.69464…
f(u7​)=−2⋅29.69478…5+10.90569…⋅29.69478…4−6.93863…⋅29.69478…3+3.14215…⋅29.69478…2+2.57708…⋅29.69478…+8.83297…=−37876817.50021…f′(u7​)=−10⋅29.69478…4+43.62278…⋅29.69478…3−20.81589…⋅29.69478…2+6.28430…⋅29.69478…+2.57708…=−6651300.86677…u8​=24.00013…
Δu8​=∣24.00013…−29.69478…∣=5.69464…Δu8​=5.69464…
u9​=19.45186…:Δu9​=4.54827…
f(u8​)=−2⋅24.00013…5+10.90569…⋅24.00013…4−6.93863…⋅24.00013…3+3.14215…⋅24.00013…2+2.57708…⋅24.00013…+8.83297…=−12401417.47322…f′(u8​)=−10⋅24.00013…4+43.62278…⋅24.00013…3−20.81589…⋅24.00013…2+6.28430…⋅24.00013…+2.57708…=−2726621.64422…u9​=19.45186…
Δu9​=∣19.45186…−24.00013…∣=4.54827…Δu9​=4.54827…
u10​=15.82312…:Δu10​=3.62873…
f(u9​)=−2⋅19.45186…5+10.90569…⋅19.45186…4−6.93863…⋅19.45186…3+3.14215…⋅19.45186…2+2.57708…⋅19.45186…+8.83297…=−4058236.53789…f′(u9​)=−10⋅19.45186…4+43.62278…⋅19.45186…3−20.81589…⋅19.45186…2+6.28430…⋅19.45186…+2.57708…=−1118360.52689…u10​=15.82312…
Δu10​=∣15.82312…−19.45186…∣=3.62873…Δu10​=3.62873…
u11​=12.93345…:Δu11​=2.88967…
f(u10​)=−2⋅15.82312…5+10.90569…⋅15.82312…4−6.93863…⋅15.82312…3+3.14215…⋅15.82312…2+2.57708…⋅15.82312…+8.83297…=−1326791.95496…f′(u10​)=−10⋅15.82312…4+43.62278…⋅15.82312…3−20.81589…⋅15.82312…2+6.28430…⋅15.82312…+2.57708…=−459149.56948…u11​=12.93345…
Δu11​=∣12.93345…−15.82312…∣=2.88967…Δu11​=2.88967…
u12​=10.64002…:Δu12​=2.29343…
f(u11​)=−2⋅12.93345…5+10.90569…⋅12.93345…4−6.93863…⋅12.93345…3+3.14215…⋅12.93345…2+2.57708…⋅12.93345…+8.83297…=−433068.72392…f′(u11​)=−10⋅12.93345…4+43.62278…⋅12.93345…3−20.81589…⋅12.93345…2+6.28430…⋅12.93345…+2.57708…=−188829.97467…u12​=10.64002…
Δu12​=∣10.64002…−12.93345…∣=2.29343…Δu12​=2.29343…
u13​=8.83106…:Δu13​=1.80895…
f(u12​)=−2⋅10.64002…5+10.90569…⋅10.64002…4−6.93863…⋅10.64002…3+3.14215…⋅10.64002…2+2.57708…⋅10.64002…+8.83297…=−140929.23683…f′(u12​)=−10⋅10.64002…4+43.62278…⋅10.64002…3−20.81589…⋅10.64002…2+6.28430…⋅10.64002…+2.57708…=−77906.25228…u13​=8.83106…
Δu13​=∣8.83106…−10.64002…∣=1.80895…Δu13​=1.80895…
u14​=7.42130…:Δu14​=1.40976…
f(u13​)=−2⋅8.83106…5+10.90569…⋅8.83106…4−6.93863…⋅8.83106…3+3.14215…⋅8.83106…2+2.57708…⋅8.83106…+8.83297…=−45595.29435…f′(u13​)=−10⋅8.83106…4+43.62278…⋅8.83106…3−20.81589…⋅8.83106…2+6.28430…⋅8.83106…+2.57708…=−32342.49741…u14​=7.42130…
Δu14​=∣7.42130…−8.83106…∣=1.40976…Δu14​=1.40976…
u15​=6.34950…:Δu15​=1.07179…
f(u14​)=−2⋅7.42130…5+10.90569…⋅7.42130…4−6.93863…⋅7.42130…3+3.14215…⋅7.42130…2+2.57708…⋅7.42130…+8.83297…=−14576.98569…f′(u14​)=−10⋅7.42130…4+43.62278…⋅7.42130…3−20.81589…⋅7.42130…2+6.28430…⋅7.42130…+2.57708…=−13600.48355…u15​=6.34950…
Δu15​=∣6.34950…−7.42130…∣=1.07179…Δu15​=1.07179…
u16​=5.57803…:Δu16​=0.77146…
f(u15​)=−2⋅6.34950…5+10.90569…⋅6.34950…4−6.93863…⋅6.34950…3+3.14215…⋅6.34950…2+2.57708…⋅6.34950…+8.83297…=−4539.15945…f′(u15​)=−10⋅6.34950…4+43.62278…⋅6.34950…3−20.81589…⋅6.34950…2+6.28430…⋅6.34950…+2.57708…=−5883.78460…u16​=5.57803…
Δu16​=∣5.57803…−6.34950…∣=0.77146…Δu16​=0.77146…
u17​=5.09067…:Δu17​=0.48736…
f(u16​)=−2⋅5.57803…5+10.90569…⋅5.57803…4−6.93863…⋅5.57803…3+3.14215…⋅5.57803…2+2.57708…⋅5.57803…+8.83297…=−1325.66062…f′(u16​)=−10⋅5.57803…4+43.62278…⋅5.57803…3−20.81589…⋅5.57803…2+6.28430…⋅5.57803…+2.57708…=−2720.07531…u17​=5.09067…
Δu17​=∣5.09067…−5.57803…∣=0.48736…Δu17​=0.48736…
u18​=4.86858…:Δu18​=0.22208…
f(u17​)=−2⋅5.09067…5+10.90569…⋅5.09067…4−6.93863…⋅5.09067…3+3.14215…⋅5.09067…2+2.57708…⋅5.09067…+8.83297…=−325.52900…f′(u17​)=−10⋅5.09067…4+43.62278…⋅5.09067…3−20.81589…⋅5.09067…2+6.28430…⋅5.09067…+2.57708…=−1465.80116…u18​=4.86858…
Δu18​=∣4.86858…−5.09067…∣=0.22208…Δu18​=0.22208…
u19​=4.82230…:Δu19​=0.04628…
f(u18​)=−2⋅4.86858…5+10.90569…⋅4.86858…4−6.93863…⋅4.86858…3+3.14215…⋅4.86858…2+2.57708…⋅4.86858…+8.83297…=−48.34478…f′(u18​)=−10⋅4.86858…4+43.62278…⋅4.86858…3−20.81589…⋅4.86858…2+6.28430…⋅4.86858…+2.57708…=−1044.51538…u19​=4.82230…
Δu19​=∣4.82230…−4.86858…∣=0.04628…Δu19​=0.04628…
u20​=4.82043…:Δu20​=0.00186…
f(u19​)=−2⋅4.82230…5+10.90569…⋅4.82230…4−6.93863…⋅4.82230…3+3.14215…⋅4.82230…2+2.57708…⋅4.82230…+8.83297…=−1.80563…f′(u19​)=−10⋅4.82230…4+43.62278…⋅4.82230…3−20.81589…⋅4.82230…2+6.28430…⋅4.82230…+2.57708…=−967.05976…u20​=4.82043…
Δu20​=∣4.82043…−4.82230…∣=0.00186…Δu20​=0.00186…
u21​=4.82043…:Δu21​=2.95792E−6
f(u20​)=−2⋅4.82043…5+10.90569…⋅4.82043…4−6.93863…⋅4.82043…3+3.14215…⋅4.82043…2+2.57708…⋅4.82043…+8.83297…=−0.00285…f′(u20​)=−10⋅4.82043…4+43.62278…⋅4.82043…3−20.81589…⋅4.82043…2+6.28430…⋅4.82043…+2.57708…=−964.00633…u21​=4.82043…
Δu21​=∣4.82043…−4.82043…∣=2.95792E−6Δu21​=2.95792E−6
u22​=4.82043…:Δu22​=7.4149E−12
f(u21​)=−2⋅4.82043…5+10.90569…⋅4.82043…4−6.93863…⋅4.82043…3+3.14215…⋅4.82043…2+2.57708…⋅4.82043…+8.83297…=−7.14797E−9f′(u21​)=−10⋅4.82043…4+43.62278…⋅4.82043…3−20.81589…⋅4.82043…2+6.28430…⋅4.82043…+2.57708…=−964.00149…u22​=4.82043…
Δu22​=∣4.82043…−4.82043…∣=7.4149E−12Δu22​=7.4149E−12
u≈4.82043…
Apply long division:u−4.82043…−2u5+10.90569…u4−6.93863…u3+3.14215…u2+2.57708…u+8.83297…​=−2u4+1.26482…u3−0.84160…u2−0.91474…u−1.83240…
−2u4+1.26482…u3−0.84160…u2−0.91474…u−1.83240…≈0
Find one solution for −2u4+1.26482…u3−0.84160…u2−0.91474…u−1.83240…=0 using Newton-Raphson:No Solution for u∈R
−2u4+1.26482…u3−0.84160…u2−0.91474…u−1.83240…=0
Newton-Raphson Approximation Definition
f(u)=−2u4+1.26482…u3−0.84160…u2−0.91474…u−1.83240…
Find f′(u):−8u3+3.79448…u2−1.68320…u−0.91474…
dud​(−2u4+1.26482…u3−0.84160…u2−0.91474…u−1.83240…)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=−dud​(2u4)+dud​(1.26482…u3)−dud​(0.84160…u2)−dud​(0.91474…u)−dud​(1.83240…)
dud​(2u4)=8u3
dud​(2u4)
Take the constant out: (a⋅f)′=a⋅f′=2dud​(u4)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=2⋅4u4−1
Simplify=8u3
dud​(1.26482…u3)=3.79448…u2
dud​(1.26482…u3)
Take the constant out: (a⋅f)′=a⋅f′=1.26482…dud​(u3)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=1.26482…⋅3u3−1
Simplify=3.79448…u2
dud​(0.84160…u2)=1.68320…u
dud​(0.84160…u2)
Take the constant out: (a⋅f)′=a⋅f′=0.84160…dud​(u2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=0.84160…⋅2u2−1
Simplify=1.68320…u
dud​(0.91474…u)=0.91474…
dud​(0.91474…u)
Take the constant out: (a⋅f)′=a⋅f′=0.91474…dudu​
Apply the common derivative: dudu​=1=0.91474…⋅1
Simplify=0.91474…
dud​(1.83240…)=0
dud​(1.83240…)
Derivative of a constant: dxd​(a)=0=0
=−8u3+3.79448…u2−1.68320…u−0.91474…−0
Simplify=−8u3+3.79448…u2−1.68320…u−0.91474…
Let u0​=−2Compute un+1​ until Δun+1​<0.000001
u1​=−1.44275…:Δu1​=0.55724…
f(u0​)=−2(−2)4+1.26482…(−2)3−0.84160…(−2)2−0.91474…(−2)−1.83240…=−45.48795…f′(u0​)=−8(−2)3+3.79448…(−2)2−1.68320…(−2)−0.91474…=81.62962…u1​=−1.44275…
Δu1​=∣−1.44275…−(−2)∣=0.55724…Δu1​=0.55724…
u2​=−1.00226…:Δu2​=0.44048…
f(u1​)=−2(−1.44275…)4+1.26482…(−1.44275…)3−0.84160…(−1.44275…)2−0.91474…(−1.44275…)−1.83240…=−14.72848…f′(u1​)=−8(−1.44275…)3+3.79448…(−1.44275…)2−1.68320…(−1.44275…)−0.91474…=33.43713…u2​=−1.00226…
Δu2​=∣−1.00226…−(−1.44275…)∣=0.44048…Δu2​=0.44048…
u3​=−0.60248…:Δu3​=0.39978…
f(u2​)=−2(−1.00226…)4+1.26482…(−1.00226…)3−0.84160…(−1.00226…)2−0.91474…(−1.00226…)−1.83240…=−5.05267…f′(u2​)=−8(−1.00226…)3+3.79448…(−1.00226…)2−1.68320…(−1.00226…)−0.91474…=12.63858…u3​=−0.60248…
Δu3​=∣−0.60248…−(−1.00226…)∣=0.39978…Δu3​=0.39978…
u4​=0.05675…:Δu4​=0.65924…
f(u3​)=−2(−0.60248…)4+1.26482…(−0.60248…)3−0.84160…(−0.60248…)2−0.91474…(−0.60248…)−1.83240…=−2.12691…f′(u3​)=−8(−0.60248…)3+3.79448…(−0.60248…)2−1.68320…(−0.60248…)−0.91474…=3.22630…u4​=0.05675…
Δu4​=∣0.05675…−(−0.60248…)∣=0.65924…Δu4​=0.65924…
u5​=−1.83097…:Δu5​=1.88772…
f(u4​)=−2⋅0.05675…4+1.26482…⋅0.05675…3−0.84160…⋅0.05675…2−0.91474…⋅0.05675…−1.83240…=−1.88681…f′(u4​)=−8⋅0.05675…3+3.79448…⋅0.05675…2−1.68320…⋅0.05675…−0.91474…=−0.99951…u5​=−1.83097…
Δu5​=∣−1.83097…−0.05675…∣=1.88772…Δu5​=1.88772…
u6​=−1.31185…:Δu6​=0.51912…
f(u5​)=−2(−1.83097…)4+1.26482…(−1.83097…)3−0.84160…(−1.83097…)2−0.91474…(−1.83097…)−1.83240…=−33.22099…f′(u5​)=−8(−1.83097…)3+3.79448…(−1.83097…)2−1.68320…(−1.83097…)−0.91474…=63.99442…u6​=−1.31185…
Δu6​=∣−1.31185…−(−1.83097…)∣=0.51912…Δu6​=0.51912…
u7​=−0.89231…:Δu7​=0.41954…
f(u6​)=−2(−1.31185…)4+1.26482…(−1.31185…)3−0.84160…(−1.31185…)2−0.91474…(−1.31185…)−1.83240…=−10.85966…f′(u6​)=−8(−1.31185…)3+3.79448…(−1.31185…)2−1.68320…(−1.31185…)−0.91474…=25.88464…u7​=−0.89231…
Δu7​=∣−0.89231…−(−1.31185…)∣=0.41954…Δu7​=0.41954…
u8​=−0.47768…:Δu8​=0.41462…
f(u7​)=−2(−0.89231…)4+1.26482…(−0.89231…)3−0.84160…(−0.89231…)2−0.91474…(−0.89231…)−1.83240…=−3.85282…f′(u7​)=−8(−0.89231…)3+3.79448…(−0.89231…)2−1.68320…(−0.89231…)−0.91474…=9.29225…u8​=−0.47768…
Δu8​=∣−0.47768…−(−0.89231…)∣=0.41462…Δu8​=0.41462…
u9​=0.64668…:Δu9​=1.12436…
f(u8​)=−2(−0.47768…)4+1.26482…(−0.47768…)3−0.84160…(−0.47768…)2−0.91474…(−0.47768…)−1.83240…=−1.82947…f′(u8​)=−8(−0.47768…)3+3.79448…(−0.47768…)2−1.68320…(−0.47768…)−0.91474…=1.62711…u9​=0.64668…
Δu9​=∣0.64668…−(−0.47768…)∣=1.12436…Δu9​=1.12436…
u10​=−0.43226…:Δu10​=1.07894…
f(u9​)=−2⋅0.64668…4+1.26482…⋅0.64668…3−0.84160…⋅0.64668…2−0.91474…⋅0.64668…−1.83240…=−2.78363…f′(u9​)=−8⋅0.64668…3+3.79448…⋅0.64668…2−1.68320…⋅0.64668…−0.91474…=−2.57995…u10​=−0.43226…
Δu10​=∣−0.43226…−0.64668…∣=1.07894…Δu10​=1.07894…
u11​=1.07993…:Δu11​=1.51219…
f(u10​)=−2(−0.43226…)4+1.26482…(−0.43226…)3−0.84160…(−0.43226…)2−0.91474…(−0.43226…)−1.83240…=−1.76622…f′(u10​)=−8(−0.43226…)3+3.79448…(−0.43226…)2−1.68320…(−0.43226…)−0.91474…=1.16798…u11​=1.07993…
Δu11​=∣1.07993…−(−0.43226…)∣=1.51219…Δu11​=1.51219…
Cannot find solution
The solutions areu≈−0.45284…,u≈4.82043…
u≈−0.45284…,u≈4.82043…
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of 3u2+u−2u2−u−2​ and compare to zero
Solve u2=0:u=0
u2=0
Apply rule xn=0⇒x=0
u=0
Take the denominator(s) of 5u+u−12​+1 and compare to zero
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u≈−0.45284…,u≈4.82043…
u≈−0.45284…,u≈4.82043…
Substitute back u=eθ,solve for θ
Solve eθ=−0.45284…:No Solution for θ∈R
eθ=−0.45284…
af(θ) cannot be zero or negative for θ∈RNoSolutionforθ∈R
Solve eθ=4.82043…:θ=ln(4.82043…)
eθ=4.82043…
Apply exponent rules
eθ=4.82043…
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(eθ)=ln(4.82043…)
Apply log rule: ln(ea)=aln(eθ)=θθ=ln(4.82043…)
θ=ln(4.82043…)
θ=ln(4.82043…)
θ=ln(4.82043…)

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

2cos^2(θ)+cos(θ)=12cos2(θ)+cos(θ)=1tan(x)sin(x)-sin(x)=0tan(x)sin(x)−sin(x)=02sin(x)=csc(x)2sin(x)=csc(x)1+tan(x)=sec(x)1+tan(x)=sec(x)sin(2x)=cos(60)sin(2x)=cos(60∘)

Frequently Asked Questions (FAQ)

  • What is the general solution for 3tanh(2θ)=5sech(θ)+1 ?

    The general solution for 3tanh(2θ)=5sech(θ)+1 is θ=ln(4.82043…)
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024