Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin(2x)sin(x)+cos(x)=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(2x)sin(x)+cos(x)=0

Solution

x=2π​+2πn,x=23π​+2πn
+1
Degrees
x=90∘+360∘n,x=270∘+360∘n
Solution steps
sin(2x)sin(x)+cos(x)=0
Rewrite using trig identities
cos(x)+sin(2x)sin(x)
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)=cos(x)+2sin(x)cos(x)sin(x)
2sin(x)cos(x)sin(x)=2sin2(x)cos(x)
2sin(x)cos(x)sin(x)
Apply exponent rule: ab⋅ac=ab+csin(x)sin(x)=sin1+1(x)=2cos(x)sin1+1(x)
Add the numbers: 1+1=2=2cos(x)sin2(x)
=cos(x)+2sin2(x)cos(x)
cos(x)+2cos(x)sin2(x)=0
Factor cos(x)+2cos(x)sin2(x):cos(x)(2sin2(x)+1)
cos(x)+2cos(x)sin2(x)
Factor out common term cos(x)=cos(x)(1+2sin2(x))
cos(x)(2sin2(x)+1)=0
Solving each part separatelycos(x)=0or2sin2(x)+1=0
cos(x)=0:x=2π​+2πn,x=23π​+2πn
cos(x)=0
General solutions for cos(x)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=2π​+2πn,x=23π​+2πn
x=2π​+2πn,x=23π​+2πn
2sin2(x)+1=0:No Solution
2sin2(x)+1=0
Solve by substitution
2sin2(x)+1=0
Let: sin(x)=u2u2+1=0
2u2+1=0:u=i21​​,u=−i21​​
2u2+1=0
Move 1to the right side
2u2+1=0
Subtract 1 from both sides2u2+1−1=0−1
Simplify2u2=−1
2u2=−1
Divide both sides by 2
2u2=−1
Divide both sides by 222u2​=2−1​
Simplifyu2=−21​
u2=−21​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=−21​​,u=−−21​​
Simplify −21​​:i21​​
−21​​
Apply radical rule: −a​=−1​a​−21​​=−1​21​​=−1​21​​
Apply imaginary number rule: −1​=i=i21​​
Simplify −−21​​:−i21​​
−−21​​
Simplify −21​​:i21​​
−21​​
Apply radical rule: −a​=−1​a​−21​​=−1​21​​=−1​21​​
Apply imaginary number rule: −1​=i=i21​​
=−i21​​
u=i21​​,u=−i21​​
Substitute back u=sin(x)sin(x)=i21​​,sin(x)=−i21​​
sin(x)=i21​​,sin(x)=−i21​​
sin(x)=i21​​:No Solution
sin(x)=i21​​
NoSolution
sin(x)=−i21​​:No Solution
sin(x)=−i21​​
NoSolution
Combine all the solutionsNoSolution
Combine all the solutionsx=2π​+2πn,x=23π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(x)-2cos(x)=0sin(x)−2cos(x)=0sec(x)=csc(x)sec(x)=csc(x)cos(x)=cos(x)sin(x)cos(x)=cos(x)sin(x)cos(2x)+sin(x)+2=0cos(2x)+sin(x)+2=0sqrt(3)tan(x)=-13​tan(x)=−1

Frequently Asked Questions (FAQ)

  • What is the general solution for sin(2x)sin(x)+cos(x)=0 ?

    The general solution for sin(2x)sin(x)+cos(x)=0 is x= pi/2+2pin,x=(3pi)/2+2pin
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024