Решения
Калькулятор Интегралов (Первообразной Функции)Калькулятор ПроизводныхАлгебраический КалькуляторКалькулятор МатрицДополнительные инструменты...
Графика
Линейный графикЭкспоненциальный графикКвадратичный графикГрафик синусаДополнительные инструменты...
Калькуляторы
Калькулятор ИМТКалькулятор сложных процентовКалькулятор процентовКалькулятор ускоренияДополнительные инструменты...
Геометрия
Калькулятор теоремы ПифагораКалькулятор Площади ОкружностиКалькулятор равнобедренного треугольникаКалькулятор треугольниковДополнительные инструменты...
Инструменты
БлокнотыГруппыШпаргалкиРабочие листыУпражнятьсяПодтвердить
ru
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Популярное Тригонометрия >

sin(54)

  • Пре Алгебра
  • Алгебра
  • Пре Исчисление
  • Исчисление
  • Функции
  • Линейная алгебра
  • Тригонометрия
  • Статистика
  • Химия
  • Экономика
  • Преобразования

Решение

sin(54∘)

Решение

45​+1​
+1
десятичными цифрами
0.80901…
Шаги решения
sin(54∘)
Перепишите используя тригонометрические тождества:cos(36∘)
sin(54∘)
Используйте следующую тождественность: sin(x)=cos(90∘−x)=cos(90∘−54∘)
После упрощения получаем=cos(36∘)
=cos(36∘)
Перепишите используя тригонометрические тождества:45​+1​
cos(36∘)
Покажите, что: cos(36∘)−sin(18∘)=21​
Используйте следующее произведение для суммирования тождества: 2sin(x)cos(y)=sin(x+y)−sin(x−y)2cos(36∘)sin(18∘)=sin(54∘)−sin(18∘)
Покажите, что: 2cos(36∘)sin(18∘)=21​
Используйте тождество двойного угла: sin(2x)=2sin(x)cos(x)sin(72∘)=2sin(36∘)cos(36∘)sin(72∘)sin(36∘)=4sin(36∘)sin(18∘)cos(36∘)cos(18∘)
Разделите обе стороны на sin(36∘)sin(72∘)=4sin(18∘)cos(36∘)cos(18∘)
Используйте следующую тождественность: sin(x)=cos(90∘−x)sin(72∘)=cos(90∘−72∘)cos(90∘−72∘)=4sin(18∘)cos(36∘)cos(18∘)
cos(18∘)=4sin(18∘)cos(36∘)cos(18∘)
Разделите обе стороны на cos(18∘)1=4sin(18∘)cos(36∘)
Разделите обе стороны на 221​=2sin(18∘)cos(36∘)
Подставьте 21​=2sin(18∘)cos(36∘)21​=sin(54∘)−sin(18∘)
sin(54∘)=cos(90∘−54∘)21​=cos(90∘−54∘)−sin(18∘)
21​=cos(36∘)−sin(18∘)
Покажите, что: cos(36∘)+sin(18∘)=45​​
Используйте правило факторизации: a2−b2=(a+b)(a−b)a=cos(36∘)+sin(18∘)(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=((cos(36∘)+sin(18∘))+(cos(36∘)−sin(18∘)))((cos(36∘)+sin(18∘))−(cos(36∘)−sin(18∘)))
Уточнить(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=2(2cos(36∘)sin(18∘))
Покажите, что: 2cos(36∘)sin(18∘)=21​
Используйте тождество двойного угла: sin(2x)=2sin(x)cos(x)sin(72∘)=2sin(36∘)cos(36∘)sin(72∘)sin(36∘)=4sin(36∘)sin(18∘)cos(36∘)cos(18∘)
Разделите обе стороны на sin(36∘)sin(72∘)=4sin(18∘)cos(36∘)cos(18∘)
Используйте следующую тождественность: sin(x)=cos(90∘−x)sin(72∘)=cos(90∘−72∘)cos(90∘−72∘)=4sin(18∘)cos(36∘)cos(18∘)
cos(18∘)=4sin(18∘)cos(36∘)cos(18∘)
Разделите обе стороны на cos(18∘)1=4sin(18∘)cos(36∘)
Разделите обе стороны на 221​=2sin(18∘)cos(36∘)
Подставьте 2cos(36∘)sin(18∘)=21​(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=1
Подставьте cos(36∘)−sin(18∘)=21​(cos(36∘)+sin(18∘))2−(21​)2=1
Уточнить(cos(36∘)+sin(18∘))2−41​=1
Добавьте 41​ к обеим сторонам(cos(36∘)+sin(18∘))2−41​+41​=1+41​
Уточнить(cos(36∘)+sin(18∘))2=45​
Извлеките квадратный корень у обеих сторонcos(36∘)+sin(18∘)=±45​​
cos(36∘)не может быть отрицательнымsin(18∘)не может быть отрицательнымcos(36∘)+sin(18∘)=45​​
Добавьте следующие уравненияcos(36∘)+sin(18∘)=25​​((cos(36∘)+sin(18∘))+(cos(36∘)−sin(18∘)))=(25​​+21​)
Уточнитьcos(36∘)=45​+1​
=45​+1​
=45​+1​

Популярные примеры

sin(arctan(3/4))sin(2/3 pi)cos(-(7pi)/(12))sin(pi^2)cos(54)
Инструменты для обученияИИ Решатель ЗадачРабочие листыУпражнятьсяШпаргалкиКалькуляторыГрафический калькуляторКалькулятор по ГеометрииПроверить решение
ПриложенияПриложение Symbolab (Android)Графический калькулятор (Android)Упражняться (Android)Приложение Symbolab (iOS)Графический калькулятор (iOS)Упражняться (iOS)Расширение для ChromeSymbolab Math Solver API
КомпанияО SymbolabБлогПомощь
ЮридическийКонфиденциальностьУсловияПолитика использованияНастройки файлов cookieНе продавать и не передавать мои личные данныеАвторское право, Правила сообщества, Структуры данных и алгоритмы (DSA) & другие Юридические ресурсыЮридический центр Learneo
Соцсети
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024