Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

csch(x)= 5/12

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

csch(x)=125​

Solution

x=ln(5)
+1
Degrees
x=92.21399…∘
Solution steps
csch(x)=125​
Rewrite using trig identities
csch(x)=125​
Use the Hyperbolic identity: csch(x)=ex−e−x2​ex−e−x2​=125​
ex−e−x2​=125​
ex−e−x2​=125​:x=ln(5)
ex−e−x2​=125​
Apply fraction cross multiply: if ba​=dc​ then a⋅d=b⋅c2⋅12=(ex−e−x)⋅5
Simplify24=(ex−e−x)⋅5
Apply exponent rules
24=(ex−e−x)⋅5
Apply exponent rule: abc=(ab)ce−x=(ex)−124=(ex−(ex)−1)⋅5
24=(ex−(ex)−1)⋅5
Rewrite the equation with ex=u24=(u−(u)−1)⋅5
Solve 24=(u−u−1)⋅5:u=5,u=−51​
24=(u−u−1)⋅5
Refine24=(u−u1​)⋅5
Simplify (u−u1​)⋅5:5(u−u1​)
(u−u1​)⋅5
Apply the commutative law: (u−u1​)⋅5=5(u−u1​)5(u−u1​)
24=5(u−u1​)
Expand 5(u−u1​):5u−u5​
5(u−u1​)
Apply the distributive law: a(b−c)=ab−aca=5,b=u,c=u1​=5u−5⋅u1​
5⋅u1​=u5​
5⋅u1​
Multiply fractions: a⋅cb​=ca⋅b​=u1⋅5​
Multiply the numbers: 1⋅5=5=u5​
=5u−u5​
24=5u−u5​
Multiply both sides by u
24=5u−u5​
Multiply both sides by u24u=5uu−u5​u
Simplify
24u=5uu−u5​u
Simplify 5uu:5u2
5uu
Apply exponent rule: ab⋅ac=ab+cuu=u1+1=5u1+1
Add the numbers: 1+1=2=5u2
Simplify −u5​u:−5
−u5​u
Multiply fractions: a⋅cb​=ca⋅b​=−u5u​
Cancel the common factor: u=−5
24u=5u2−5
24u=5u2−5
24u=5u2−5
Solve 24u=5u2−5:u=5,u=−51​
24u=5u2−5
Switch sides5u2−5=24u
Move 24uto the left side
5u2−5=24u
Subtract 24u from both sides5u2−5−24u=24u−24u
Simplify5u2−5−24u=0
5u2−5−24u=0
Write in the standard form ax2+bx+c=05u2−24u−5=0
Solve with the quadratic formula
5u2−24u−5=0
Quadratic Equation Formula:
For a=5,b=−24,c=−5u1,2​=2⋅5−(−24)±(−24)2−4⋅5(−5)​​
u1,2​=2⋅5−(−24)±(−24)2−4⋅5(−5)​​
(−24)2−4⋅5(−5)​=26
(−24)2−4⋅5(−5)​
Apply rule −(−a)=a=(−24)2+4⋅5⋅5​
Apply exponent rule: (−a)n=an,if n is even(−24)2=242=242+4⋅5⋅5​
Multiply the numbers: 4⋅5⋅5=100=242+100​
242=576=576+100​
Add the numbers: 576+100=676=676​
Factor the number: 676=262=262​
Apply radical rule: nan​=a262​=26=26
u1,2​=2⋅5−(−24)±26​
Separate the solutionsu1​=2⋅5−(−24)+26​,u2​=2⋅5−(−24)−26​
u=2⋅5−(−24)+26​:5
2⋅5−(−24)+26​
Apply rule −(−a)=a=2⋅524+26​
Add the numbers: 24+26=50=2⋅550​
Multiply the numbers: 2⋅5=10=1050​
Divide the numbers: 1050​=5=5
u=2⋅5−(−24)−26​:−51​
2⋅5−(−24)−26​
Apply rule −(−a)=a=2⋅524−26​
Subtract the numbers: 24−26=−2=2⋅5−2​
Multiply the numbers: 2⋅5=10=10−2​
Apply the fraction rule: b−a​=−ba​=−102​
Cancel the common factor: 2=−51​
The solutions to the quadratic equation are:u=5,u=−51​
u=5,u=−51​
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of (u−u−1)5 and compare to zero
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=5,u=−51​
u=5,u=−51​
Substitute back u=ex,solve for x
Solve ex=5:x=ln(5)
ex=5
Apply exponent rules
ex=5
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln(5)
Apply log rule: ln(ea)=aln(ex)=xx=ln(5)
x=ln(5)
Solve ex=−51​:No Solution for x∈R
ex=−51​
af(x) cannot be zero or negative for x∈RNoSolutionforx∈R
x=ln(5)
Verify Solutions:x=ln(5)True
Check the solutions by plugging them into ex−e−x2​=125​
Remove the ones that don't agree with the equation.
Plug in x=ln(5):True
eln(5)−e−ln(5)2​=125​
eln(5)−e−ln(5)2​=125​
eln(5)−e−ln(5)2​
eln(5)=5
eln(5)
Apply log rule: aloga​(b)=b=5
e−ln(5)=5−1
e−ln(5)
Apply exponent rule: abc=(ab)c=(eln(5))−1
Apply log rule: aloga​(b)=beln(5)=5=5−1
=5−5−12​
Simplify
5−5−12​
Apply exponent rule: a−1=a1​=5−51​2​
Join 5−51​:524​
5−51​
Convert element to fraction: 5=55⋅5​=55⋅5​−51​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=55⋅5−1​
5⋅5−1=24
5⋅5−1
Multiply the numbers: 5⋅5=25=25−1
Subtract the numbers: 25−1=24=24
=524​
=524​2​
Apply the fraction rule: cb​a​=ba⋅c​=242⋅5​
Multiply the numbers: 2⋅5=10=2410​
Cancel the common factor: 2=125​
=125​
125​=125​
True
The solution isx=ln(5)
x=ln(5)

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

2sin^2(x)+sin(x)=1,0<= x<= 2pi2sin2(x)+sin(x)=1,0≤x≤2π3csc^2(5x)=-43csc2(5x)=−4sin(t)=-1/2sin(t)=−21​3sec^2(x)=43sec2(x)=4cos^2(x)-2cos(x)-3=0cos2(x)−2cos(x)−3=0

Frequently Asked Questions (FAQ)

  • What is the general solution for csch(x)= 5/12 ?

    The general solution for csch(x)= 5/12 is x=ln(5)
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024