Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan(x)+cot(x)=4sin(2x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan(x)+cot(x)=4sin(2x)

Solution

x=8π​+πn,x=83π​+πn,x=85π​+πn,x=87π​+πn
+1
Degrees
x=22.5∘+180∘n,x=67.5∘+180∘n,x=112.5∘+180∘n,x=157.5∘+180∘n
Solution steps
tan(x)+cot(x)=4sin(2x)
Subtract 4sin(2x) from both sidestan(x)+cot(x)−4sin(2x)=0
Express with sin, cos
cot(x)+tan(x)−4sin(2x)
Use the basic trigonometric identity: cot(x)=sin(x)cos(x)​=sin(x)cos(x)​+tan(x)−4sin(2x)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=sin(x)cos(x)​+cos(x)sin(x)​−4sin(2x)
Simplify sin(x)cos(x)​+cos(x)sin(x)​−4sin(2x):sin(x)cos(x)cos2(x)+sin2(x)−4sin(2x)sin(x)cos(x)​
sin(x)cos(x)​+cos(x)sin(x)​−4sin(2x)
Convert element to fraction: 4sin(2x)=14sin(2x)​=sin(x)cos(x)​+cos(x)sin(x)​−14sin(2x)​
Least Common Multiplier of sin(x),cos(x),1:sin(x)cos(x)
sin(x),cos(x),1
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear in at least one of the factored expressions=sin(x)cos(x)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM sin(x)cos(x)
For sin(x)cos(x)​:multiply the denominator and numerator by cos(x)sin(x)cos(x)​=sin(x)cos(x)cos(x)cos(x)​=sin(x)cos(x)cos2(x)​
For cos(x)sin(x)​:multiply the denominator and numerator by sin(x)cos(x)sin(x)​=cos(x)sin(x)sin(x)sin(x)​=sin(x)cos(x)sin2(x)​
For 14sin(2x)​:multiply the denominator and numerator by sin(x)cos(x)14sin(2x)​=1⋅sin(x)cos(x)4sin(2x)sin(x)cos(x)​=sin(x)cos(x)4sin(2x)sin(x)cos(x)​
=sin(x)cos(x)cos2(x)​+sin(x)cos(x)sin2(x)​−sin(x)cos(x)4sin(2x)sin(x)cos(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sin(x)cos(x)cos2(x)+sin2(x)−4sin(2x)sin(x)cos(x)​
=sin(x)cos(x)cos2(x)+sin2(x)−4sin(2x)sin(x)cos(x)​
cos(x)sin(x)cos2(x)+sin2(x)−4cos(x)sin(2x)sin(x)​=0
g(x)f(x)​=0⇒f(x)=0cos2(x)+sin2(x)−4cos(x)sin(2x)sin(x)=0
Rewrite using trig identities
cos2(x)+sin2(x)−4cos(x)sin(2x)sin(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1=−4cos(x)sin(2x)sin(x)+1
Use the Double Angle identity: 2sin(x)cos(x)=sin(2x)sin(x)cos(x)=2sin(2x)​=1−4⋅2sin(2x)​sin(2x)
4⋅2sin(2x)​sin(2x)=2sin2(2x)
4⋅2sin(2x)​sin(2x)
Multiply fractions: a⋅cb​=ca⋅b​=2sin(2x)⋅4sin(2x)​
sin(2x)⋅4sin(2x)=4sin2(2x)
sin(2x)⋅4sin(2x)
Apply exponent rule: ab⋅ac=ab+csin(2x)sin(2x)=sin1+1(2x)=4sin1+1(2x)
Add the numbers: 1+1=2=4sin2(2x)
=24sin2(2x)​
Divide the numbers: 24​=2=2sin2(2x)
=1−2sin2(2x)
1−2sin2(2x)=0
Solve by substitution
1−2sin2(2x)=0
Let: sin(2x)=u1−2u2=0
1−2u2=0:u=21​​,u=−21​​
1−2u2=0
Move 1to the right side
1−2u2=0
Subtract 1 from both sides1−2u2−1=0−1
Simplify−2u2=−1
−2u2=−1
Divide both sides by −2
−2u2=−1
Divide both sides by −2−2−2u2​=−2−1​
Simplifyu2=21​
u2=21​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=21​​,u=−21​​
Substitute back u=sin(2x)sin(2x)=21​​,sin(2x)=−21​​
sin(2x)=21​​,sin(2x)=−21​​
sin(2x)=21​​:x=8π​+πn,x=83π​+πn
sin(2x)=21​​
General solutions for sin(2x)=21​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
2x=4π​+2πn,2x=43π​+2πn
2x=4π​+2πn,2x=43π​+2πn
Solve 2x=4π​+2πn:x=8π​+πn
2x=4π​+2πn
Divide both sides by 2
2x=4π​+2πn
Divide both sides by 222x​=24π​​+22πn​
Simplify
22x​=24π​​+22πn​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 24π​​+22πn​:8π​+πn
24π​​+22πn​
24π​​=8π​
24π​​
Apply the fraction rule: acb​​=c⋅ab​=4⋅2π​
Multiply the numbers: 4⋅2=8=8π​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
=8π​+πn
x=8π​+πn
x=8π​+πn
x=8π​+πn
Solve 2x=43π​+2πn:x=83π​+πn
2x=43π​+2πn
Divide both sides by 2
2x=43π​+2πn
Divide both sides by 222x​=243π​​+22πn​
Simplify
22x​=243π​​+22πn​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 243π​​+22πn​:83π​+πn
243π​​+22πn​
243π​​=83π​
243π​​
Apply the fraction rule: acb​​=c⋅ab​=4⋅23π​
Multiply the numbers: 4⋅2=8=83π​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
=83π​+πn
x=83π​+πn
x=83π​+πn
x=83π​+πn
x=8π​+πn,x=83π​+πn
sin(2x)=−21​​:x=85π​+πn,x=87π​+πn
sin(2x)=−21​​
General solutions for sin(2x)=−21​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
2x=45π​+2πn,2x=47π​+2πn
2x=45π​+2πn,2x=47π​+2πn
Solve 2x=45π​+2πn:x=85π​+πn
2x=45π​+2πn
Divide both sides by 2
2x=45π​+2πn
Divide both sides by 222x​=245π​​+22πn​
Simplify
22x​=245π​​+22πn​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 245π​​+22πn​:85π​+πn
245π​​+22πn​
245π​​=85π​
245π​​
Apply the fraction rule: acb​​=c⋅ab​=4⋅25π​
Multiply the numbers: 4⋅2=8=85π​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
=85π​+πn
x=85π​+πn
x=85π​+πn
x=85π​+πn
Solve 2x=47π​+2πn:x=87π​+πn
2x=47π​+2πn
Divide both sides by 2
2x=47π​+2πn
Divide both sides by 222x​=247π​​+22πn​
Simplify
22x​=247π​​+22πn​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 247π​​+22πn​:87π​+πn
247π​​+22πn​
247π​​=87π​
247π​​
Apply the fraction rule: acb​​=c⋅ab​=4⋅27π​
Multiply the numbers: 4⋅2=8=87π​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
=87π​+πn
x=87π​+πn
x=87π​+πn
x=87π​+πn
x=85π​+πn,x=87π​+πn
Combine all the solutionsx=8π​+πn,x=83π​+πn,x=85π​+πn,x=87π​+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

tan(θ)=(-sqrt(3))/35cos^3(x)=5cos(x)sin(2x-pi/4)=(sqrt(2))/2tan(2x)=cot(x)cos(x)=0.7
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024