Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sec(2x)=tan(2x)+1

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sec(2x)=tan(2x)+1

Solution

x=2πn,x=π+2πn
+1
Degrees
x=0∘+360∘n,x=180∘+360∘n
Solution steps
sec(2x)=tan(2x)+1
Subtract tan(2x)+1 from both sidessec(2x)−tan(2x)−1=0
Express with sin, coscos(2x)1​−cos(2x)sin(2x)​−1=0
Simplify cos(2x)1​−cos(2x)sin(2x)​−1:cos(2x)1−sin(2x)−cos(2x)​
cos(2x)1​−cos(2x)sin(2x)​−1
Combine the fractions cos(2x)1​−cos(2x)sin(2x)​:cos(2x)1−sin(2x)​
Apply rule ca​±cb​=ca±b​=cos(2x)1−sin(2x)​
=cos(2x)−sin(2x)+1​−1
Convert element to fraction: 1=cos(2x)1cos(2x)​=cos(2x)1−sin(2x)​−cos(2x)1⋅cos(2x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(2x)1−sin(2x)−1⋅cos(2x)​
Multiply: 1⋅cos(2x)=cos(2x)=cos(2x)1−sin(2x)−cos(2x)​
cos(2x)1−sin(2x)−cos(2x)​=0
g(x)f(x)​=0⇒f(x)=01−sin(2x)−cos(2x)=0
Add cos(2x) to both sides1−sin(2x)=cos(2x)
Square both sides(1−sin(2x))2=cos2(2x)
Subtract cos2(2x) from both sides(1−sin(2x))2−cos2(2x)=0
Factor (1−sin(2x))2−cos2(2x):(1−sin(2x)+cos(2x))(1−sin(2x)−cos(2x))
(1−sin(2x))2−cos2(2x)
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(1−sin(2x))2−cos2(2x)=((1−sin(2x))+cos(2x))((1−sin(2x))−cos(2x))=((1−sin(2x))+cos(2x))((1−sin(2x))−cos(2x))
Refine=(cos(2x)−sin(2x)+1)(−sin(2x)−cos(2x)+1)
(1−sin(2x)+cos(2x))(1−sin(2x)−cos(2x))=0
Solving each part separately1−sin(2x)+cos(2x)=0or1−sin(2x)−cos(2x)=0
1−sin(2x)+cos(2x)=0:x=2π​+2πn,x=23π​+2πn,x=4π​+πn
1−sin(2x)+cos(2x)=0
Rewrite using trig identities
1+cos(2x)−sin(2x)
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)=1+cos(2x)−2sin(x)cos(x)
Use the Double Angle identity: cos(2x)=2cos2(x)−1=1+2cos2(x)−1−2cos(x)sin(x)
Simplify 1+2cos2(x)−1−2cos(x)sin(x):2cos2(x)−2cos(x)sin(x)
1+2cos2(x)−1−2cos(x)sin(x)
Group like terms=2cos2(x)−2cos(x)sin(x)+1−1
1−1=0=2cos2(x)−2cos(x)sin(x)
=2cos2(x)−2cos(x)sin(x)
2cos2(x)−2cos(x)sin(x)=0
Factor 2cos2(x)−2cos(x)sin(x):2cos(x)(cos(x)−sin(x))
2cos2(x)−2cos(x)sin(x)
Apply exponent rule: ab+c=abaccos2(x)=cos(x)cos(x)=2cos(x)cos(x)−2sin(x)cos(x)
Factor out common term 2cos(x)=2cos(x)(cos(x)−sin(x))
2cos(x)(cos(x)−sin(x))=0
Solving each part separatelycos(x)=0orcos(x)−sin(x)=0
cos(x)=0:x=2π​+2πn,x=23π​+2πn
cos(x)=0
General solutions for cos(x)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=2π​+2πn,x=23π​+2πn
x=2π​+2πn,x=23π​+2πn
cos(x)−sin(x)=0:x=4π​+πn
cos(x)−sin(x)=0
Rewrite using trig identities
cos(x)−sin(x)=0
Divide both sides by cos(x),cos(x)=0cos(x)cos(x)−sin(x)​=cos(x)0​
Simplify1−cos(x)sin(x)​=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)1−tan(x)=0
1−tan(x)=0
Move 1to the right side
1−tan(x)=0
Subtract 1 from both sides1−tan(x)−1=0−1
Simplify−tan(x)=−1
−tan(x)=−1
Divide both sides by −1
−tan(x)=−1
Divide both sides by −1−1−tan(x)​=−1−1​
Simplifytan(x)=1
tan(x)=1
General solutions for tan(x)=1
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
x=4π​+πn
x=4π​+πn
Combine all the solutionsx=2π​+2πn,x=23π​+2πn,x=4π​+πn
1−sin(2x)−cos(2x)=0:x=2πn,x=π+2πn,x=4π​+πn
1−sin(2x)−cos(2x)=0
Rewrite using trig identities
1−cos(2x)−sin(2x)
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)=1−cos(2x)−2sin(x)cos(x)
Use the Double Angle identity: cos(2x)=1−2sin2(x)=1−(1−2sin2(x))−2cos(x)sin(x)
Simplify 1−(1−2sin2(x))−2cos(x)sin(x):2sin2(x)−2cos(x)sin(x)
1−(1−2sin2(x))−2cos(x)sin(x)
−(1−2sin2(x)):−1+2sin2(x)
−(1−2sin2(x))
Distribute parentheses=−(1)−(−2sin2(x))
Apply minus-plus rules−(−a)=a,−(a)=−a=−1+2sin2(x)
=1−1+2sin2(x)−2cos(x)sin(x)
1−1=0=2sin2(x)−2cos(x)sin(x)
=2sin2(x)−2cos(x)sin(x)
2sin2(x)−2cos(x)sin(x)=0
Factor 2sin2(x)−2cos(x)sin(x):2sin(x)(sin(x)−cos(x))
2sin2(x)−2cos(x)sin(x)
Apply exponent rule: ab+c=abacsin2(x)=sin(x)sin(x)=2sin(x)sin(x)−2sin(x)cos(x)
Factor out common term 2sin(x)=2sin(x)(sin(x)−cos(x))
2sin(x)(sin(x)−cos(x))=0
Solving each part separatelysin(x)=0orsin(x)−cos(x)=0
sin(x)=0:x=2πn,x=π+2πn
sin(x)=0
General solutions for sin(x)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=0+2πn,x=π+2πn
x=0+2πn,x=π+2πn
Solve x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn,x=π+2πn
sin(x)−cos(x)=0:x=4π​+πn
sin(x)−cos(x)=0
Rewrite using trig identities
sin(x)−cos(x)=0
Divide both sides by cos(x),cos(x)=0cos(x)sin(x)−cos(x)​=cos(x)0​
Simplifycos(x)sin(x)​−1=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)tan(x)−1=0
tan(x)−1=0
Move 1to the right side
tan(x)−1=0
Add 1 to both sidestan(x)−1+1=0+1
Simplifytan(x)=1
tan(x)=1
General solutions for tan(x)=1
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
x=4π​+πn
x=4π​+πn
Combine all the solutionsx=2πn,x=π+2πn,x=4π​+πn
Combine all the solutionsx=2π​+2πn,x=23π​+2πn,x=4π​+πn,x=2πn,x=π+2πn
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into sec(2x)=tan(2x)+1
Remove the ones that don't agree with the equation.
Check the solution 2π​+2πn:False
2π​+2πn
Plug in n=12π​+2π1
For sec(2x)=tan(2x)+1plug inx=2π​+2π1sec(2(2π​+2π1))=tan(2(2π​+2π1))+1
Refine−1=1
⇒False
Check the solution 23π​+2πn:False
23π​+2πn
Plug in n=123π​+2π1
For sec(2x)=tan(2x)+1plug inx=23π​+2π1sec(2(23π​+2π1))=tan(2(23π​+2π1))+1
Refine−1=1
⇒False
Check the solution 4π​+πn:True
4π​+πn
Plug in n=14π​+π1
For sec(2x)=tan(2x)+1plug inx=4π​+π1sec(2(4π​+π1))=tan(2(4π​+π1))+1
Refine∞=∞
⇒True
Check the solution 2πn:True
2πn
Plug in n=12π1
For sec(2x)=tan(2x)+1plug inx=2π1sec(2⋅2π1)=tan(2⋅2π1)+1
Refine1=1
⇒True
Check the solution π+2πn:True
π+2πn
Plug in n=1π+2π1
For sec(2x)=tan(2x)+1plug inx=π+2π1sec(2(π+2π1))=tan(2(π+2π1))+1
Refine1=1
⇒True
x=4π​+πn,x=2πn,x=π+2πn
Since the equation is undefined for:4π​+πnx=2πn,x=π+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sec^2(x)+3sec(x)+2=03sin(x)cos(x)-2cos(x)=0sin(x)=cos(x)+15sin(x)+2=04-sec^2(x)=0

Frequently Asked Questions (FAQ)

  • What is the general solution for sec(2x)=tan(2x)+1 ?

    The general solution for sec(2x)=tan(2x)+1 is x=2pin,x=pi+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024