Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2sin(x)-4cos(x)=3,0<= x<= 2pi

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2sin(x)−4cos(x)=3,0≤x≤2π

Solution

x=−2.76975…+2π,x=1.84246…
+1
Degrees
x=201.30453…∘,x=105.56536…∘
Solution steps
2sin(x)−4cos(x)=3,0≤x≤2π
Add 4cos(x) to both sides2sin(x)=3+4cos(x)
Square both sides(2sin(x))2=(3+4cos(x))2
Subtract (3+4cos(x))2 from both sides4sin2(x)−9−24cos(x)−16cos2(x)=0
Rewrite using trig identities
−9−16cos2(x)−24cos(x)+4sin2(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=−9−16cos2(x)−24cos(x)+4(1−cos2(x))
Simplify −9−16cos2(x)−24cos(x)+4(1−cos2(x)):−20cos2(x)−24cos(x)−5
−9−16cos2(x)−24cos(x)+4(1−cos2(x))
Expand 4(1−cos2(x)):4−4cos2(x)
4(1−cos2(x))
Apply the distributive law: a(b−c)=ab−aca=4,b=1,c=cos2(x)=4⋅1−4cos2(x)
Multiply the numbers: 4⋅1=4=4−4cos2(x)
=−9−16cos2(x)−24cos(x)+4−4cos2(x)
Simplify −9−16cos2(x)−24cos(x)+4−4cos2(x):−20cos2(x)−24cos(x)−5
−9−16cos2(x)−24cos(x)+4−4cos2(x)
Group like terms=−16cos2(x)−24cos(x)−4cos2(x)−9+4
Add similar elements: −16cos2(x)−4cos2(x)=−20cos2(x)=−20cos2(x)−24cos(x)−9+4
Add/Subtract the numbers: −9+4=−5=−20cos2(x)−24cos(x)−5
=−20cos2(x)−24cos(x)−5
=−20cos2(x)−24cos(x)−5
−5−20cos2(x)−24cos(x)=0
Solve by substitution
−5−20cos2(x)−24cos(x)=0
Let: cos(x)=u−5−20u2−24u=0
−5−20u2−24u=0:u=−106+11​​,u=−106−11​​
−5−20u2−24u=0
Write in the standard form ax2+bx+c=0−20u2−24u−5=0
Solve with the quadratic formula
−20u2−24u−5=0
Quadratic Equation Formula:
For a=−20,b=−24,c=−5u1,2​=2(−20)−(−24)±(−24)2−4(−20)(−5)​​
u1,2​=2(−20)−(−24)±(−24)2−4(−20)(−5)​​
(−24)2−4(−20)(−5)​=411​
(−24)2−4(−20)(−5)​
Apply rule −(−a)=a=(−24)2−4⋅20⋅5​
Apply exponent rule: (−a)n=an,if n is even(−24)2=242=242−4⋅20⋅5​
Multiply the numbers: 4⋅20⋅5=400=242−400​
242=576=576−400​
Subtract the numbers: 576−400=176=176​
Prime factorization of 176:24⋅11
176
176divides by 2176=88⋅2=2⋅88
88divides by 288=44⋅2=2⋅2⋅44
44divides by 244=22⋅2=2⋅2⋅2⋅22
22divides by 222=11⋅2=2⋅2⋅2⋅2⋅11
2,11 are all prime numbers, therefore no further factorization is possible=2⋅2⋅2⋅2⋅11
=24⋅11
=24⋅11​
Apply radical rule: =11​24​
Apply radical rule: 24​=224​=22=2211​
Refine=411​
u1,2​=2(−20)−(−24)±411​​
Separate the solutionsu1​=2(−20)−(−24)+411​​,u2​=2(−20)−(−24)−411​​
u=2(−20)−(−24)+411​​:−106+11​​
2(−20)−(−24)+411​​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅2024+411​​
Multiply the numbers: 2⋅20=40=−4024+411​​
Apply the fraction rule: −ba​=−ba​=−4024+411​​
Cancel 4024+411​​:106+11​​
4024+411​​
Factor 24+411​:4(6+11​)
24+411​
Rewrite as=4⋅6+411​
Factor out common term 4=4(6+11​)
=404(6+11​)​
Cancel the common factor: 4=106+11​​
=−106+11​​
u=2(−20)−(−24)−411​​:−106−11​​
2(−20)−(−24)−411​​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅2024−411​​
Multiply the numbers: 2⋅20=40=−4024−411​​
Apply the fraction rule: −ba​=−ba​=−4024−411​​
Cancel 4024−411​​:106−11​​
4024−411​​
Factor 24−411​:4(6−11​)
24−411​
Rewrite as=4⋅6−411​
Factor out common term 4=4(6−11​)
=404(6−11​)​
Cancel the common factor: 4=106−11​​
=−106−11​​
The solutions to the quadratic equation are:u=−106+11​​,u=−106−11​​
Substitute back u=cos(x)cos(x)=−106+11​​,cos(x)=−106−11​​
cos(x)=−106+11​​,cos(x)=−106−11​​
cos(x)=−106+11​​,0≤x≤2π:x=arccos(−106+11​​),x=−arccos(−106+11​​)+2π
cos(x)=−106+11​​,0≤x≤2π
Apply trig inverse properties
cos(x)=−106+11​​
General solutions for cos(x)=−106+11​​cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnx=arccos(−106+11​​)+2πn,x=−arccos(−106+11​​)+2πn
x=arccos(−106+11​​)+2πn,x=−arccos(−106+11​​)+2πn
Solutions for the range 0≤x≤2πx=arccos(−106+11​​),x=−arccos(−106+11​​)+2π
cos(x)=−106−11​​,0≤x≤2π:x=arccos(−106−11​​),x=−arccos(−106−11​​)+2π
cos(x)=−106−11​​,0≤x≤2π
Apply trig inverse properties
cos(x)=−106−11​​
General solutions for cos(x)=−106−11​​cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnx=arccos(−106−11​​)+2πn,x=−arccos(−106−11​​)+2πn
x=arccos(−106−11​​)+2πn,x=−arccos(−106−11​​)+2πn
Solutions for the range 0≤x≤2πx=arccos(−106−11​​),x=−arccos(−106−11​​)+2π
Combine all the solutionsx=arccos(−106+11​​),x=−arccos(−106+11​​)+2π,x=arccos(−106−11​​),x=−arccos(−106−11​​)+2π
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into 2sin(x)−4cos(x)=3
Remove the ones that don't agree with the equation.
Check the solution arccos(−106+11​​):False
arccos(−106+11​​)
Plug in n=1arccos(−106+11​​)
For 2sin(x)−4cos(x)=3plug inx=arccos(−106+11​​)2sin(arccos(−106+11​​))−4cos(arccos(−106+11​​))=3
Refine4.45329…=3
⇒False
Check the solution −arccos(−106+11​​)+2π:True
−arccos(−106+11​​)+2π
Plug in n=1−arccos(−106+11​​)+2π
For 2sin(x)−4cos(x)=3plug inx=−arccos(−106+11​​)+2π2sin(−arccos(−106+11​​)+2π)−4cos(−arccos(−106+11​​)+2π)=3
Refine3=3
⇒True
Check the solution arccos(−106−11​​):True
arccos(−106−11​​)
Plug in n=1arccos(−106−11​​)
For 2sin(x)−4cos(x)=3plug inx=arccos(−106−11​​)2sin(arccos(−106−11​​))−4cos(arccos(−106−11​​))=3
Refine3=3
⇒True
Check the solution −arccos(−106−11​​)+2π:False
−arccos(−106−11​​)+2π
Plug in n=1−arccos(−106−11​​)+2π
For 2sin(x)−4cos(x)=3plug inx=−arccos(−106−11​​)+2π2sin(−arccos(−106−11​​)+2π)−4cos(−arccos(−106−11​​)+2π)=3
Refine−0.85329…=3
⇒False
x=−arccos(−106+11​​)+2π,x=arccos(−106−11​​)
Show solutions in decimal formx=−2.76975…+2π,x=1.84246…

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sec^2(θ)-6sec(θ)+8=0sin^2(x)-cos^2(x)-sin(x)=010tan(x)sin(x)=sin(x)cos(2x)=2sin(x)cos(x)sin(θ)= 5/6

Frequently Asked Questions (FAQ)

  • What is the general solution for 2sin(x)-4cos(x)=3,0<= x<= 2pi ?

    The general solution for 2sin(x)-4cos(x)=3,0<= x<= 2pi is x=-2.76975…+2pi,x=1.84246…
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024