Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin(x)=2*sin(3x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(x)=2⋅sin(3x)

Solution

x=2πn,x=π+2πn,x=−0.91173…+2πn,x=π+0.91173…+2πn,x=0.91173…+2πn,x=π−0.91173…+2πn
+1
Degrees
x=0∘+360∘n,x=180∘+360∘n,x=−52.23875…∘+360∘n,x=232.23875…∘+360∘n,x=52.23875…∘+360∘n,x=127.76124…∘+360∘n
Solution steps
sin(x)=2sin(3x)
Subtract 2sin(3x) from both sidessin(x)−2sin(3x)=0
Rewrite using trig identities
sin(x)−2sin(3x)
sin(3x)=3sin(x)−4sin3(x)
sin(3x)
Rewrite using trig identities
sin(3x)
Rewrite as=sin(2x+x)
Use the Angle Sum identity: sin(s+t)=sin(s)cos(t)+cos(s)sin(t)=sin(2x)cos(x)+cos(2x)sin(x)
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)=cos(2x)sin(x)+cos(x)2sin(x)cos(x)
Simplify cos(2x)sin(x)+cos(x)⋅2sin(x)cos(x):sin(x)cos(2x)+2cos2(x)sin(x)
cos(2x)sin(x)+cos(x)2sin(x)cos(x)
cos(x)⋅2sin(x)cos(x)=2cos2(x)sin(x)
cos(x)2sin(x)cos(x)
Apply exponent rule: ab⋅ac=ab+ccos(x)cos(x)=cos1+1(x)=2sin(x)cos1+1(x)
Add the numbers: 1+1=2=2sin(x)cos2(x)
=sin(x)cos(2x)+2cos2(x)sin(x)
=sin(x)cos(2x)+2cos2(x)sin(x)
=sin(x)cos(2x)+2cos2(x)sin(x)
Use the Double Angle identity: cos(2x)=1−2sin2(x)=(1−2sin2(x))sin(x)+2cos2(x)sin(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=(1−2sin2(x))sin(x)+2(1−sin2(x))sin(x)
Expand (1−2sin2(x))sin(x)+2(1−sin2(x))sin(x):−4sin3(x)+3sin(x)
(1−2sin2(x))sin(x)+2(1−sin2(x))sin(x)
=sin(x)(1−2sin2(x))+2sin(x)(1−sin2(x))
Expand sin(x)(1−2sin2(x)):sin(x)−2sin3(x)
sin(x)(1−2sin2(x))
Apply the distributive law: a(b−c)=ab−aca=sin(x),b=1,c=2sin2(x)=sin(x)1−sin(x)2sin2(x)
=1sin(x)−2sin2(x)sin(x)
Simplify 1⋅sin(x)−2sin2(x)sin(x):sin(x)−2sin3(x)
1sin(x)−2sin2(x)sin(x)
1⋅sin(x)=sin(x)
1sin(x)
Multiply: 1⋅sin(x)=sin(x)=sin(x)
2sin2(x)sin(x)=2sin3(x)
2sin2(x)sin(x)
Apply exponent rule: ab⋅ac=ab+csin2(x)sin(x)=sin2+1(x)=2sin2+1(x)
Add the numbers: 2+1=3=2sin3(x)
=sin(x)−2sin3(x)
=sin(x)−2sin3(x)
=sin(x)−2sin3(x)+2(1−sin2(x))sin(x)
Expand 2sin(x)(1−sin2(x)):2sin(x)−2sin3(x)
2sin(x)(1−sin2(x))
Apply the distributive law: a(b−c)=ab−aca=2sin(x),b=1,c=sin2(x)=2sin(x)1−2sin(x)sin2(x)
=2⋅1sin(x)−2sin2(x)sin(x)
Simplify 2⋅1⋅sin(x)−2sin2(x)sin(x):2sin(x)−2sin3(x)
2⋅1sin(x)−2sin2(x)sin(x)
2⋅1⋅sin(x)=2sin(x)
2⋅1sin(x)
Multiply the numbers: 2⋅1=2=2sin(x)
2sin2(x)sin(x)=2sin3(x)
2sin2(x)sin(x)
Apply exponent rule: ab⋅ac=ab+csin2(x)sin(x)=sin2+1(x)=2sin2+1(x)
Add the numbers: 2+1=3=2sin3(x)
=2sin(x)−2sin3(x)
=2sin(x)−2sin3(x)
=sin(x)−2sin3(x)+2sin(x)−2sin3(x)
Simplify sin(x)−2sin3(x)+2sin(x)−2sin3(x):−4sin3(x)+3sin(x)
sin(x)−2sin3(x)+2sin(x)−2sin3(x)
Group like terms=−2sin3(x)−2sin3(x)+sin(x)+2sin(x)
Add similar elements: −2sin3(x)−2sin3(x)=−4sin3(x)=−4sin3(x)+sin(x)+2sin(x)
Add similar elements: sin(x)+2sin(x)=3sin(x)=−4sin3(x)+3sin(x)
=−4sin3(x)+3sin(x)
=−4sin3(x)+3sin(x)
=sin(x)−2(3sin(x)−4sin3(x))
Simplify sin(x)−2(3sin(x)−4sin3(x)):−5sin(x)+8sin3(x)
sin(x)−2(3sin(x)−4sin3(x))
Expand −2(3sin(x)−4sin3(x)):−6sin(x)+8sin3(x)
−2(3sin(x)−4sin3(x))
Apply the distributive law: a(b−c)=ab−aca=−2,b=3sin(x),c=4sin3(x)=−2⋅3sin(x)−(−2)⋅4sin3(x)
Apply minus-plus rules−(−a)=a=−2⋅3sin(x)+2⋅4sin3(x)
Simplify −2⋅3sin(x)+2⋅4sin3(x):−6sin(x)+8sin3(x)
−2⋅3sin(x)+2⋅4sin3(x)
Multiply the numbers: 2⋅3=6=−6sin(x)+2⋅4sin3(x)
Multiply the numbers: 2⋅4=8=−6sin(x)+8sin3(x)
=−6sin(x)+8sin3(x)
=sin(x)−6sin(x)+8sin3(x)
Add similar elements: sin(x)−6sin(x)=−5sin(x)=−5sin(x)+8sin3(x)
=−5sin(x)+8sin3(x)
−5sin(x)+8sin3(x)=0
Solve by substitution
−5sin(x)+8sin3(x)=0
Let: sin(x)=u−5u+8u3=0
−5u+8u3=0:u=0,u=−410​​,u=410​​
−5u+8u3=0
Factor −5u+8u3:u(22​u+5​)(22​u−5​)
−5u+8u3
Factor out common term u:u(8u2−5)
8u3−5u
Apply exponent rule: ab+c=abacu3=u2u=8u2u−5u
Factor out common term u=u(8u2−5)
=u(8u2−5)
Factor 8u2−5:(8​u+5​)(8​u−5​)
8u2−5
Rewrite 8u2−5 as (8​u)2−(5​)2
8u2−5
Apply radical rule: a=(a​)28=(8​)2=(8​)2u2−5
Apply radical rule: a=(a​)25=(5​)2=(8​)2u2−(5​)2
Apply exponent rule: ambm=(ab)m(8​)2u2=(8​u)2=(8​u)2−(5​)2
=(8​u)2−(5​)2
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(8​u)2−(5​)2=(8​u+5​)(8​u−5​)=(8​u+5​)(8​u−5​)
=u(8​u+5​)(8​u−5​)
Refine=u(22​u+5​)(22​u−5​)
u(22​u+5​)(22​u−5​)=0
Using the Zero Factor Principle: If ab=0then a=0or b=0u=0or22​u+5​=0or22​u−5​=0
Solve 22​u+5​=0:u=−410​​
22​u+5​=0
Move 5​to the right side
22​u+5​=0
Subtract 5​ from both sides22​u+5​−5​=0−5​
Simplify22​u=−5​
22​u=−5​
Divide both sides by 22​
22​u=−5​
Divide both sides by 22​22​22​u​=22​−5​​
Simplify
22​22​u​=22​−5​​
Simplify 22​22​u​:u
22​22​u​
Divide the numbers: 22​=1=2​2​u​
Cancel the common factor: 2​=u
Simplify 22​−5​​:−410​​
22​−5​​
Apply the fraction rule: b−a​=−ba​=−22​5​​
Rationalize −22​5​​:−410​​
−22​5​​
Multiply by the conjugate 2​2​​=−22​2​5​2​​
5​2​=10​
5​2​
Apply radical rule: a​b​=a⋅b​5​2​=5⋅2​=5⋅2​
Multiply the numbers: 5⋅2=10=10​
22​2​=4
22​2​
Apply exponent rule: ab⋅ac=ab+c22​2​=2⋅221​⋅221​=21+21​+21​=21+21​+21​
Add similar elements: 21​+21​=2⋅21​=21+2⋅21​
2⋅21​=1
2⋅21​
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=21+1
Add the numbers: 1+1=2=22
22=4=4
=−410​​
=−410​​
u=−410​​
u=−410​​
u=−410​​
Solve 22​u−5​=0:u=410​​
22​u−5​=0
Move 5​to the right side
22​u−5​=0
Add 5​ to both sides22​u−5​+5​=0+5​
Simplify22​u=5​
22​u=5​
Divide both sides by 22​
22​u=5​
Divide both sides by 22​22​22​u​=22​5​​
Simplify
22​22​u​=22​5​​
Simplify 22​22​u​:u
22​22​u​
Divide the numbers: 22​=1=2​2​u​
Cancel the common factor: 2​=u
Simplify 22​5​​:410​​
22​5​​
Multiply by the conjugate 2​2​​=22​2​5​2​​
5​2​=10​
5​2​
Apply radical rule: a​b​=a⋅b​5​2​=5⋅2​=5⋅2​
Multiply the numbers: 5⋅2=10=10​
22​2​=4
22​2​
Apply exponent rule: ab⋅ac=ab+c22​2​=2⋅221​⋅221​=21+21​+21​=21+21​+21​
Add similar elements: 21​+21​=2⋅21​=21+2⋅21​
2⋅21​=1
2⋅21​
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=21+1
Add the numbers: 1+1=2=22
22=4=4
=410​​
u=410​​
u=410​​
u=410​​
The solutions areu=0,u=−410​​,u=410​​
Substitute back u=sin(x)sin(x)=0,sin(x)=−410​​,sin(x)=410​​
sin(x)=0,sin(x)=−410​​,sin(x)=410​​
sin(x)=0:x=2πn,x=π+2πn
sin(x)=0
General solutions for sin(x)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=0+2πn,x=π+2πn
x=0+2πn,x=π+2πn
Solve x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn,x=π+2πn
sin(x)=−410​​:x=arcsin(−410​​)+2πn,x=π+arcsin(410​​)+2πn
sin(x)=−410​​
Apply trig inverse properties
sin(x)=−410​​
General solutions for sin(x)=−410​​sin(x)=−a⇒x=arcsin(−a)+2πn,x=π+arcsin(a)+2πnx=arcsin(−410​​)+2πn,x=π+arcsin(410​​)+2πn
x=arcsin(−410​​)+2πn,x=π+arcsin(410​​)+2πn
sin(x)=410​​:x=arcsin(410​​)+2πn,x=π−arcsin(410​​)+2πn
sin(x)=410​​
Apply trig inverse properties
sin(x)=410​​
General solutions for sin(x)=410​​sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πnx=arcsin(410​​)+2πn,x=π−arcsin(410​​)+2πn
x=arcsin(410​​)+2πn,x=π−arcsin(410​​)+2πn
Combine all the solutionsx=2πn,x=π+2πn,x=arcsin(−410​​)+2πn,x=π+arcsin(410​​)+2πn,x=arcsin(410​​)+2πn,x=π−arcsin(410​​)+2πn
Show solutions in decimal formx=2πn,x=π+2πn,x=−0.91173…+2πn,x=π+0.91173…+2πn,x=0.91173…+2πn,x=π−0.91173…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

tan^2(x)-5tan(x)-6=0tan(θ)= 12/52cos^2(t)=1-cos(t)sec^2(θ)+sec(θ)=0cos(2x)-3cos(x)+2=0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024