Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

csc(x-pi)cos^2(x-pi)-cot(x-pi)=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

csc(x−π)cos2(x−π)−cot(x−π)=0

Solution

x=2π​+2πn,x=23π​+2πn
+1
Degrees
x=90∘+360∘n,x=270∘+360∘n
Solution steps
csc(x−π)cos2(x−π)−cot(x−π)=0
Rewrite using trig identities
csc(x−π)cos2(x−π)−cot(x−π)=0
Rewrite using trig identities
cos(x−π)
Use the Angle Difference identity: cos(s−t)=cos(s)cos(t)+sin(s)sin(t)=cos(x)cos(π)+sin(x)sin(π)
Simplify cos(x)cos(π)+sin(x)sin(π):−cos(x)
cos(x)cos(π)+sin(x)sin(π)
cos(x)cos(π)=−cos(x)
cos(x)cos(π)
Simplify cos(π):−1
cos(π)
Use the following trivial identity:cos(π)=(−1)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=−1
=(−1)cos(x)
Refine=−cos(x)
=−cos(x)+sin(π)sin(x)
sin(x)sin(π)=0
sin(x)sin(π)
Simplify sin(π):0
sin(π)
Use the following trivial identity:sin(π)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=0
=0⋅sin(x)
Apply rule 0⋅a=0=0
=−cos(x)+0
−cos(x)+0=−cos(x)=−cos(x)
=−cos(x)
Use the basic trigonometric identity: csc(x)=sin(x)1​=sin(x−π)1​
Use the Angle Difference identity: sin(s−t)=sin(s)cos(t)−cos(s)sin(t)=sin(x)cos(π)−cos(x)sin(π)1​
Simplify sin(x)cos(π)−cos(x)sin(π)1​:−sin(x)1​
sin(x)cos(π)−cos(x)sin(π)1​
sin(x)cos(π)−cos(x)sin(π)=−sin(x)
sin(x)cos(π)−cos(x)sin(π)
sin(x)cos(π)=−sin(x)
sin(x)cos(π)
Simplify cos(π):−1
cos(π)
Use the following trivial identity:cos(π)=(−1)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=−1
=(−1)sin(x)
Refine=−sin(x)
=−sin(x)−sin(π)cos(x)
cos(x)sin(π)=0
cos(x)sin(π)
Simplify sin(π):0
sin(π)
Use the following trivial identity:sin(π)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=0
=0⋅cos(x)
Apply rule 0⋅a=0=0
=−sin(x)−0
−sin(x)−0=−sin(x)=−sin(x)
=−sin(x)1​
Apply the fraction rule: −ba​=−ba​=−sin(x)1​
=−sin(x)1​
Use the basic trigonometric identity: cot(x)=sin(x)cos(x)​=sin(x−π)cos(x−π)​
Use the Angle Difference identity: sin(s−t)=sin(s)cos(t)−cos(s)sin(t)=sin(x)cos(π)−cos(x)sin(π)cos(x−π)​
Use the Angle Difference identity: cos(s−t)=cos(s)cos(t)+sin(s)sin(t)=sin(x)cos(π)−cos(x)sin(π)cos(x)cos(π)+sin(x)sin(π)​
Simplify sin(x)cos(π)−cos(x)sin(π)cos(x)cos(π)+sin(x)sin(π)​:sin(x)cos(x)​
sin(x)cos(π)−cos(x)sin(π)cos(x)cos(π)+sin(x)sin(π)​
cos(x)cos(π)+sin(x)sin(π)=−cos(x)
cos(x)cos(π)+sin(x)sin(π)
cos(x)cos(π)=−cos(x)
cos(x)cos(π)
Simplify cos(π):−1
cos(π)
Use the following trivial identity:cos(π)=(−1)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=−1
=(−1)cos(x)
Refine=−cos(x)
=−cos(x)+sin(π)sin(x)
sin(x)sin(π)=0
sin(x)sin(π)
Simplify sin(π):0
sin(π)
Use the following trivial identity:sin(π)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=0
=0⋅sin(x)
Apply rule 0⋅a=0=0
=−cos(x)+0
−cos(x)+0=−cos(x)=−cos(x)
=cos(π)sin(x)−sin(π)cos(x)−cos(x)​
sin(x)cos(π)−cos(x)sin(π)=−sin(x)
sin(x)cos(π)−cos(x)sin(π)
sin(x)cos(π)=−sin(x)
sin(x)cos(π)
Simplify cos(π):−1
cos(π)
Use the following trivial identity:cos(π)=(−1)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=−1
=(−1)sin(x)
Refine=−sin(x)
=−sin(x)−sin(π)cos(x)
cos(x)sin(π)=0
cos(x)sin(π)
Simplify sin(π):0
sin(π)
Use the following trivial identity:sin(π)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=0
=0⋅cos(x)
Apply rule 0⋅a=0=0
=−sin(x)−0
−sin(x)−0=−sin(x)=−sin(x)
=−sin(x)−cos(x)​
Apply the fraction rule: −b−a​=ba​=sin(x)cos(x)​
=sin(x)cos(x)​
(−sin(x)1​)(−cos(x))2−sin(x)cos(x)​=0
Simplify (−sin(x)1​)(−cos(x))2−sin(x)cos(x)​:sin(x)−cos2(x)−cos(x)​
(−sin(x)1​)(−cos(x))2−sin(x)cos(x)​
Remove parentheses: (−a)=−a=−sin(x)1​(−cos(x))2−sin(x)cos(x)​
sin(x)1​(−cos(x))2=sin(x)cos2(x)​
sin(x)1​(−cos(x))2
(−cos(x))2=cos2(x)
(−cos(x))2
Apply exponent rule: (−a)n=an,if n is even(−cos(x))2=cos2(x)=cos2(x)
=sin(x)1​cos2(x)
Multiply fractions: a⋅cb​=ca⋅b​=sin(x)1⋅cos2(x)​
Multiply: 1⋅cos2(x)=cos2(x)=sin(x)cos2(x)​
=−sin(x)cos2(x)​−sin(x)cos(x)​
Apply rule ca​±cb​=ca±b​=sin(x)−cos2(x)−cos(x)​
sin(x)−cos2(x)−cos(x)​=0
sin(x)−cos2(x)−cos(x)​=0
g(x)f(x)​=0⇒f(x)=0−cos2(x)−cos(x)=0
Solve by substitution
−cos2(x)−cos(x)=0
Let: cos(x)=u−u2−u=0
−u2−u=0:u=−1,u=0
−u2−u=0
Solve with the quadratic formula
−u2−u=0
Quadratic Equation Formula:
For a=−1,b=−1,c=0u1,2​=2(−1)−(−1)±(−1)2−4(−1)⋅0​​
u1,2​=2(−1)−(−1)±(−1)2−4(−1)⋅0​​
(−1)2−4(−1)⋅0​=1
(−1)2−4(−1)⋅0​
Apply rule −(−a)=a=(−1)2+4⋅1⋅0​
(−1)2=1
(−1)2
Apply exponent rule: (−a)n=an,if n is even(−1)2=12=12
Apply rule 1a=1=1
4⋅1⋅0=0
4⋅1⋅0
Apply rule 0⋅a=0=0
=1+0​
Add the numbers: 1+0=1=1​
Apply rule 1​=1=1
u1,2​=2(−1)−(−1)±1​
Separate the solutionsu1​=2(−1)−(−1)+1​,u2​=2(−1)−(−1)−1​
u=2(−1)−(−1)+1​:−1
2(−1)−(−1)+1​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅11+1​
Add the numbers: 1+1=2=−2⋅12​
Multiply the numbers: 2⋅1=2=−22​
Apply the fraction rule: −ba​=−ba​=−22​
Apply rule aa​=1=−1
u=2(−1)−(−1)−1​:0
2(−1)−(−1)−1​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅11−1​
Subtract the numbers: 1−1=0=−2⋅10​
Multiply the numbers: 2⋅1=2=−20​
Apply the fraction rule: −ba​=−ba​=−20​
Apply rule a0​=0,a=0=−0
=0
The solutions to the quadratic equation are:u=−1,u=0
Substitute back u=cos(x)cos(x)=−1,cos(x)=0
cos(x)=−1,cos(x)=0
cos(x)=−1:x=π+2πn
cos(x)=−1
General solutions for cos(x)=−1
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=π+2πn
x=π+2πn
cos(x)=0:x=2π​+2πn,x=23π​+2πn
cos(x)=0
General solutions for cos(x)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=2π​+2πn,x=23π​+2πn
x=2π​+2πn,x=23π​+2πn
Combine all the solutionsx=π+2πn,x=2π​+2πn,x=23π​+2πn
Since the equation is undefined for:π+2πnx=2π​+2πn,x=23π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

tan^2(θ)+6tan(θ)+8=0sin(x/2)+cos(x)=1-cos(x)+cos(2x)=0sin(4x)+1=04cos^2(θ)=3

Frequently Asked Questions (FAQ)

  • What is the general solution for csc(x-pi)cos^2(x-pi)-cot(x-pi)=0 ?

    The general solution for csc(x-pi)cos^2(x-pi)-cot(x-pi)=0 is x= pi/2+2pin,x=(3pi)/2+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024