Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2tan(x/2)-csc(x)=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2tan(2x​)−csc(x)=0

Solution

x=3π​+34πn​,x=π+34πn​
+1
Degrees
x=60∘+240∘n,x=180∘+240∘n
Solution steps
2tan(2x​)−csc(x)=0
Express with sin, cos
−csc(x)+2tan(2x​)
Use the basic trigonometric identity: csc(x)=sin(x)1​=−sin(x)1​+2tan(2x​)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=−sin(x)1​+2⋅cos(2x​)sin(2x​)​
Simplify −sin(x)1​+2⋅cos(2x​)sin(2x​)​:sin(x)cos(2x​)−cos(2x​)+2sin(2x​)sin(x)​
−sin(x)1​+2⋅cos(2x​)sin(2x​)​
Multiply 2⋅cos(2x​)sin(2x​)​:cos(2x​)2sin(2x​)​
2⋅cos(2x​)sin(2x​)​
Multiply fractions: a⋅cb​=ca⋅b​=cos(2x​)sin(2x​)⋅2​
=−sin(x)1​+cos(2x​)2sin(2x​)​
Least Common Multiplier of sin(x),cos(2x​):sin(x)cos(2x​)
sin(x),cos(2x​)
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in sin(x) or cos(2x​)=sin(x)cos(2x​)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM sin(x)cos(2x​)
For sin(x)1​:multiply the denominator and numerator by cos(2x​)sin(x)1​=sin(x)cos(2x​)1⋅cos(2x​)​=sin(x)cos(2x​)cos(2x​)​
For cos(2x​)sin(2x​)⋅2​:multiply the denominator and numerator by sin(x)cos(2x​)sin(2x​)⋅2​=cos(2x​)sin(x)sin(2x​)⋅2sin(x)​
=−sin(x)cos(2x​)cos(2x​)​+cos(2x​)sin(x)sin(2x​)⋅2sin(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sin(x)cos(2x​)−cos(2x​)+sin(2x​)⋅2sin(x)​
=sin(x)cos(2x​)−cos(2x​)+2sin(2x​)sin(x)​
cos(2x​)sin(x)−cos(2x​)+2sin(2x​)sin(x)​=0
g(x)f(x)​=0⇒f(x)=0−cos(2x​)+2sin(2x​)sin(x)=0
Rewrite using trig identities
−cos(2x​)+2sin(2x​)sin(x)
Use the Product to Sum identity: sin(s)sin(t)=21​(cos(s−t)−cos(s+t))=−cos(2x​)+2⋅21​(cos(2x​−x)−cos(2x​+x))
Simplify −cos(2x​)+2⋅21​(cos(2x​−x)−cos(2x​+x)):−cos(23x​)
−cos(2x​)+2⋅21​(cos(2x​−x)−cos(2x​+x))
2⋅21​(cos(2x​−x)−cos(2x​+x))=cos(2x​)−cos(23x​)
2⋅21​(cos(2x​−x)−cos(2x​+x))
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2(cos(2x​−x)−cos(2x​+x))​
Cancel the common factor: 2=1⋅(cos(2x​−x)−cos(2x​+x))
Join 2x​−x:−2x​
2x​−x
Convert element to fraction: x=2x2​=2x​−2x⋅2​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2x−x⋅2​
Add similar elements: x−2x=−x=2−x​
Apply the fraction rule: b−a​=−ba​=−2x​
=1⋅(cos(−2x​)−cos(2x​+x))
Join 2x​+x:23x​
2x​+x
Convert element to fraction: x=2x2​=2x​+2x⋅2​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2x+x⋅2​
Add similar elements: x+2x=3x=23x​
=1⋅(cos(−2x​)−cos(23x​))
Refine=cos(−2x​)−cos(23x​)
Use the negative angle identity: cos(−x)=cos(x)=cos(2x​)−cos(23x​)
=−cos(2x​)+cos(2x​)−cos(23x​)
Add similar elements: −cos(2x​)+cos(2x​)=0=−cos(23x​)
=−cos(23x​)
−cos(23x​)=0
Divide both sides by −1
−cos(23x​)=0
Divide both sides by −1−1−cos(23x​)​=−10​
Simplifycos(23x​)=0
cos(23x​)=0
General solutions for cos(23x​)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
23x​=2π​+2πn,23x​=23π​+2πn
23x​=2π​+2πn,23x​=23π​+2πn
Solve 23x​=2π​+2πn:x=3π​+34πn​
23x​=2π​+2πn
Multiply both sides by 2
23x​=2π​+2πn
Multiply both sides by 222⋅3x​=2⋅2π​+2⋅2πn
Simplify
22⋅3x​=2⋅2π​+2⋅2πn
Simplify 22⋅3x​:3x
22⋅3x​
Multiply the numbers: 2⋅3=6=26x​
Divide the numbers: 26​=3=3x
Simplify 2⋅2π​+2⋅2πn:π+4πn
2⋅2π​+2⋅2πn
2⋅2π​=π
2⋅2π​
Multiply fractions: a⋅cb​=ca⋅b​=2π2​
Cancel the common factor: 2=π
2⋅2πn=4πn
2⋅2πn
Multiply the numbers: 2⋅2=4=4πn
=π+4πn
3x=π+4πn
3x=π+4πn
3x=π+4πn
Divide both sides by 3
3x=π+4πn
Divide both sides by 333x​=3π​+34πn​
Simplifyx=3π​+34πn​
x=3π​+34πn​
Solve 23x​=23π​+2πn:x=π+34πn​
23x​=23π​+2πn
Multiply both sides by 2
23x​=23π​+2πn
Multiply both sides by 222⋅3x​=2⋅23π​+2⋅2πn
Simplify
22⋅3x​=2⋅23π​+2⋅2πn
Simplify 22⋅3x​:3x
22⋅3x​
Multiply the numbers: 2⋅3=6=26x​
Divide the numbers: 26​=3=3x
Simplify 2⋅23π​+2⋅2πn:3π+4πn
2⋅23π​+2⋅2πn
2⋅23π​=3π
2⋅23π​
Multiply fractions: a⋅cb​=ca⋅b​=23π2​
Cancel the common factor: 2=3π
2⋅2πn=4πn
2⋅2πn
Multiply the numbers: 2⋅2=4=4πn
=3π+4πn
3x=3π+4πn
3x=3π+4πn
3x=3π+4πn
Divide both sides by 3
3x=3π+4πn
Divide both sides by 333x​=33π​+34πn​
Simplifyx=π+34πn​
x=π+34πn​
x=3π​+34πn​,x=π+34πn​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin^2(x)-sin(x)=2cos(4x)=(sqrt(2))/22sin(θ)=-sqrt(2)sqrt(3)cot(t)-1=02cos^2(x)+3sin(x)=3

Frequently Asked Questions (FAQ)

  • What is the general solution for 2tan(x/2)-csc(x)=0 ?

    The general solution for 2tan(x/2)-csc(x)=0 is x= pi/3+(4pin)/3 ,x=pi+(4pin)/3
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024