Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan(2θ)+2sin(θ)=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan(2θ)+2sin(θ)=0

Solution

θ=2πn,θ=π+2πn,θ=3π​+34πn​,θ=π+34πn​
+1
Degrees
θ=0∘+360∘n,θ=180∘+360∘n,θ=60∘+240∘n,θ=180∘+240∘n
Solution steps
tan(2θ)+2sin(θ)=0
Express with sin, cos
tan(2θ)+2sin(θ)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=cos(2θ)sin(2θ)​+2sin(θ)
Simplify cos(2θ)sin(2θ)​+2sin(θ):cos(2θ)sin(2θ)+2sin(θ)cos(2θ)​
cos(2θ)sin(2θ)​+2sin(θ)
Convert element to fraction: 2sin(θ)=cos(2θ)2sin(θ)cos(2θ)​=cos(2θ)sin(2θ)​+cos(2θ)2sin(θ)cos(2θ)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(2θ)sin(2θ)+2sin(θ)cos(2θ)​
=cos(2θ)sin(2θ)+2sin(θ)cos(2θ)​
cos(2θ)sin(2θ)+2cos(2θ)sin(θ)​=0
g(x)f(x)​=0⇒f(x)=0sin(2θ)+2cos(2θ)sin(θ)=0
Rewrite using trig identities
sin(2θ)+2cos(2θ)sin(θ)
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)=2sin(θ)cos(θ)+2cos(2θ)sin(θ)
2cos(2θ)sin(θ)+2cos(θ)sin(θ)=0
Factor 2cos(2θ)sin(θ)+2cos(θ)sin(θ):2sin(θ)(cos(2θ)+cos(θ))
2cos(2θ)sin(θ)+2cos(θ)sin(θ)
Rewrite as=2sin(θ)cos(2θ)+2sin(θ)cos(θ)
Factor out common term 2sin(θ)=2sin(θ)(cos(2θ)+cos(θ))
2sin(θ)(cos(2θ)+cos(θ))=0
Solving each part separatelysin(θ)=0orcos(2θ)+cos(θ)=0
sin(θ)=0:θ=2πn,θ=π+2πn
sin(θ)=0
General solutions for sin(θ)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
θ=0+2πn,θ=π+2πn
θ=0+2πn,θ=π+2πn
Solve θ=0+2πn:θ=2πn
θ=0+2πn
0+2πn=2πnθ=2πn
θ=2πn,θ=π+2πn
cos(2θ)+cos(θ)=0:θ=3π​+34πn​,θ=π+34πn​
cos(2θ)+cos(θ)=0
Rewrite using trig identities
cos(2θ)+cos(θ)
Use the Sum to Product identity: cos(s)+cos(t)=2cos(2s+t​)cos(2s−t​)=2cos(22θ+θ​)cos(22θ−θ​)
Simplify 2cos(22θ+θ​)cos(22θ−θ​):2cos(23θ​)cos(2θ​)
2cos(22θ+θ​)cos(22θ−θ​)
Add similar elements: 2θ+θ=3θ=2cos(23θ​)cos(22θ−θ​)
Add similar elements: 2θ−θ=θ=2cos(23θ​)cos(2θ​)
=2cos(23θ​)cos(2θ​)
2cos(23θ​)cos(2θ​)=0
Solving each part separatelycos(23θ​)=0orcos(2θ​)=0
cos(23θ​)=0:θ=3π​+34πn​,θ=π+34πn​
cos(23θ​)=0
General solutions for cos(23θ​)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
23θ​=2π​+2πn,23θ​=23π​+2πn
23θ​=2π​+2πn,23θ​=23π​+2πn
Solve 23θ​=2π​+2πn:θ=3π​+34πn​
23θ​=2π​+2πn
Multiply both sides by 2
23θ​=2π​+2πn
Multiply both sides by 222⋅3θ​=2⋅2π​+2⋅2πn
Simplify
22⋅3θ​=2⋅2π​+2⋅2πn
Simplify 22⋅3θ​:3θ
22⋅3θ​
Multiply the numbers: 2⋅3=6=26θ​
Divide the numbers: 26​=3=3θ
Simplify 2⋅2π​+2⋅2πn:π+4πn
2⋅2π​+2⋅2πn
2⋅2π​=π
2⋅2π​
Multiply fractions: a⋅cb​=ca⋅b​=2π2​
Cancel the common factor: 2=π
2⋅2πn=4πn
2⋅2πn
Multiply the numbers: 2⋅2=4=4πn
=π+4πn
3θ=π+4πn
3θ=π+4πn
3θ=π+4πn
Divide both sides by 3
3θ=π+4πn
Divide both sides by 333θ​=3π​+34πn​
Simplifyθ=3π​+34πn​
θ=3π​+34πn​
Solve 23θ​=23π​+2πn:θ=π+34πn​
23θ​=23π​+2πn
Multiply both sides by 2
23θ​=23π​+2πn
Multiply both sides by 222⋅3θ​=2⋅23π​+2⋅2πn
Simplify
22⋅3θ​=2⋅23π​+2⋅2πn
Simplify 22⋅3θ​:3θ
22⋅3θ​
Multiply the numbers: 2⋅3=6=26θ​
Divide the numbers: 26​=3=3θ
Simplify 2⋅23π​+2⋅2πn:3π+4πn
2⋅23π​+2⋅2πn
2⋅23π​=3π
2⋅23π​
Multiply fractions: a⋅cb​=ca⋅b​=23π2​
Cancel the common factor: 2=3π
2⋅2πn=4πn
2⋅2πn
Multiply the numbers: 2⋅2=4=4πn
=3π+4πn
3θ=3π+4πn
3θ=3π+4πn
3θ=3π+4πn
Divide both sides by 3
3θ=3π+4πn
Divide both sides by 333θ​=33π​+34πn​
Simplifyθ=π+34πn​
θ=π+34πn​
θ=3π​+34πn​,θ=π+34πn​
cos(2θ​)=0:θ=π+4πn,θ=3π+4πn
cos(2θ​)=0
General solutions for cos(2θ​)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
2θ​=2π​+2πn,2θ​=23π​+2πn
2θ​=2π​+2πn,2θ​=23π​+2πn
Solve 2θ​=2π​+2πn:θ=π+4πn
2θ​=2π​+2πn
Multiply both sides by 2
2θ​=2π​+2πn
Multiply both sides by 222θ​=2⋅2π​+2⋅2πn
Simplify
22θ​=2⋅2π​+2⋅2πn
Simplify 22θ​:θ
22θ​
Divide the numbers: 22​=1=θ
Simplify 2⋅2π​+2⋅2πn:π+4πn
2⋅2π​+2⋅2πn
2⋅2π​=π
2⋅2π​
Multiply fractions: a⋅cb​=ca⋅b​=2π2​
Cancel the common factor: 2=π
2⋅2πn=4πn
2⋅2πn
Multiply the numbers: 2⋅2=4=4πn
=π+4πn
θ=π+4πn
θ=π+4πn
θ=π+4πn
Solve 2θ​=23π​+2πn:θ=3π+4πn
2θ​=23π​+2πn
Multiply both sides by 2
2θ​=23π​+2πn
Multiply both sides by 222θ​=2⋅23π​+2⋅2πn
Simplify
22θ​=2⋅23π​+2⋅2πn
Simplify 22θ​:θ
22θ​
Divide the numbers: 22​=1=θ
Simplify 2⋅23π​+2⋅2πn:3π+4πn
2⋅23π​+2⋅2πn
2⋅23π​=3π
2⋅23π​
Multiply fractions: a⋅cb​=ca⋅b​=23π2​
Cancel the common factor: 2=3π
2⋅2πn=4πn
2⋅2πn
Multiply the numbers: 2⋅2=4=4πn
=3π+4πn
θ=3π+4πn
θ=3π+4πn
θ=3π+4πn
θ=π+4πn,θ=3π+4πn
Combine all the solutionsθ=3π​+34πn​,θ=π+34πn​,θ=π+4πn,θ=3π+4πn
Merge Overlapping Intervalsθ=3π​+34πn​,θ=π+34πn​
Combine all the solutionsθ=2πn,θ=π+2πn,θ=3π​+34πn​,θ=π+34πn​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

2cos^2(x)+7sin(x)=5tan^2(x)+sec(x)=1-4sin(2x)=0(sin(2x))/(cos(x))=2sin(x)=0.8

Frequently Asked Questions (FAQ)

  • What is the general solution for tan(2θ)+2sin(θ)=0 ?

    The general solution for tan(2θ)+2sin(θ)=0 is θ=2pin,θ=pi+2pin,θ= pi/3+(4pin)/3 ,θ=pi+(4pin)/3
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024