Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos^2(2x+pi/6)= 1/2

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos2(2x+6π​)=21​

Solution

x=πn+24π​,x=π+πn−245π​,x=πn+247π​,x=πn−2411π​
+1
Degrees
x=7.5∘+180∘n,x=142.5∘+180∘n,x=52.5∘+180∘n,x=−82.5∘+180∘n
Solution steps
cos2(2x+6π​)=21​
Solve by substitution
cos2(2x+6π​)=21​
Let: cos(2x+6π​)=uu2=21​
u2=21​:u=21​​,u=−21​​
u2=21​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=21​​,u=−21​​
Substitute back u=cos(2x+6π​)cos(2x+6π​)=21​​,cos(2x+6π​)=−21​​
cos(2x+6π​)=21​​,cos(2x+6π​)=−21​​
cos(2x+6π​)=21​​:x=πn+24π​,x=π+πn−245π​
cos(2x+6π​)=21​​
Apply trig inverse properties
cos(2x+6π​)=21​​
General solutions for cos(2x+6π​)=21​​cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πn2x+6π​=arccos(21​​)+2πn,2x+6π​=2π−arccos(21​​)+2πn
2x+6π​=arccos(21​​)+2πn,2x+6π​=2π−arccos(21​​)+2πn
Solve 2x+6π​=arccos(21​​)+2πn:x=πn+24π​
2x+6π​=arccos(21​​)+2πn
Simplify arccos(21​​)+2πn:4π​+2πn
arccos(21​​)+2πn
Use the following trivial identity:arccos(21​​)=4π​x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=4π​+2πn
2x+6π​=4π​+2πn
Move 6π​to the right side
2x+6π​=4π​+2πn
Subtract 6π​ from both sides2x+6π​−6π​=4π​+2πn−6π​
Simplify
2x+6π​−6π​=4π​+2πn−6π​
Simplify 2x+6π​−6π​:2x
2x+6π​−6π​
Add similar elements: 6π​−6π​=0
=2x
Simplify 4π​+2πn−6π​:2πn+12π​
4π​+2πn−6π​
Group like terms=2πn+4π​−6π​
Least Common Multiplier of 4,6:12
4,6
Least Common Multiplier (LCM)
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Prime factorization of 6:2⋅3
6
6divides by 26=3⋅2=2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3
Multiply each factor the greatest number of times it occurs in either 4 or 6=2⋅2⋅3
Multiply the numbers: 2⋅2⋅3=12=12
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 12
For 4π​:multiply the denominator and numerator by 34π​=4⋅3π3​=12π3​
For 6π​:multiply the denominator and numerator by 26π​=6⋅2π2​=12π2​
=12π3​−12π2​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=12π3−π2​
Add similar elements: 3π−2π=π=2πn+12π​
2x=2πn+12π​
2x=2πn+12π​
2x=2πn+12π​
Divide both sides by 2
2x=2πn+12π​
Divide both sides by 222x​=22πn​+212π​​
Simplify
22x​=22πn​+212π​​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 22πn​+212π​​:πn+24π​
22πn​+212π​​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
212π​​=24π​
212π​​
Apply the fraction rule: acb​​=c⋅ab​=12⋅2π​
Multiply the numbers: 12⋅2=24=24π​
=πn+24π​
x=πn+24π​
x=πn+24π​
x=πn+24π​
Solve 2x+6π​=2π−arccos(21​​)+2πn:x=π+πn−245π​
2x+6π​=2π−arccos(21​​)+2πn
Simplify 2π−arccos(21​​)+2πn:2π−4π​+2πn
2π−arccos(21​​)+2πn
Use the following trivial identity:arccos(21​​)=4π​x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=2π−4π​+2πn
2x+6π​=2π−4π​+2πn
Move 6π​to the right side
2x+6π​=2π−4π​+2πn
Subtract 6π​ from both sides2x+6π​−6π​=2π−4π​+2πn−6π​
Simplify
2x+6π​−6π​=2π−4π​+2πn−6π​
Simplify 2x+6π​−6π​:2x
2x+6π​−6π​
Add similar elements: 6π​−6π​=0
=2x
Simplify 2π−4π​+2πn−6π​:2π+2πn−125π​
2π−4π​+2πn−6π​
Group like terms=2π+2πn−4π​−6π​
Least Common Multiplier of 4,6:12
4,6
Least Common Multiplier (LCM)
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Prime factorization of 6:2⋅3
6
6divides by 26=3⋅2=2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3
Multiply each factor the greatest number of times it occurs in either 4 or 6=2⋅2⋅3
Multiply the numbers: 2⋅2⋅3=12=12
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 12
For 4π​:multiply the denominator and numerator by 34π​=4⋅3π3​=12π3​
For 6π​:multiply the denominator and numerator by 26π​=6⋅2π2​=12π2​
=−12π3​−12π2​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=12−π3−π2​
Add similar elements: −3π−2π=−5π=12−5π​
Apply the fraction rule: b−a​=−ba​=2π+2πn−125π​
2x=2π+2πn−125π​
2x=2π+2πn−125π​
2x=2π+2πn−125π​
Divide both sides by 2
2x=2π+2πn−125π​
Divide both sides by 222x​=22π​+22πn​−2125π​​
Simplify
22x​=22π​+22πn​−2125π​​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 22π​+22πn​−2125π​​:π+πn−245π​
22π​+22πn​−2125π​​
22π​=π
22π​
Divide the numbers: 22​=1=π
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
2125π​​=245π​
2125π​​
Apply the fraction rule: acb​​=c⋅ab​=12⋅25π​
Multiply the numbers: 12⋅2=24=245π​
=π+πn−245π​
x=π+πn−245π​
x=π+πn−245π​
x=π+πn−245π​
x=πn+24π​,x=π+πn−245π​
cos(2x+6π​)=−21​​:x=πn+247π​,x=πn−2411π​
cos(2x+6π​)=−21​​
Apply trig inverse properties
cos(2x+6π​)=−21​​
General solutions for cos(2x+6π​)=−21​​cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πn2x+6π​=arccos(−21​​)+2πn,2x+6π​=−arccos(−21​​)+2πn
2x+6π​=arccos(−21​​)+2πn,2x+6π​=−arccos(−21​​)+2πn
Solve 2x+6π​=arccos(−21​​)+2πn:x=πn+247π​
2x+6π​=arccos(−21​​)+2πn
Simplify arccos(−21​​)+2πn:43π​+2πn
arccos(−21​​)+2πn
Use the following trivial identity:arccos(−21​​)=43π​x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=43π​+2πn
2x+6π​=43π​+2πn
Move 6π​to the right side
2x+6π​=43π​+2πn
Subtract 6π​ from both sides2x+6π​−6π​=43π​+2πn−6π​
Simplify
2x+6π​−6π​=43π​+2πn−6π​
Simplify 2x+6π​−6π​:2x
2x+6π​−6π​
Add similar elements: 6π​−6π​=0
=2x
Simplify 43π​+2πn−6π​:2πn+127π​
43π​+2πn−6π​
Group like terms=2πn−6π​+43π​
Least Common Multiplier of 6,4:12
6,4
Least Common Multiplier (LCM)
Prime factorization of 6:2⋅3
6
6divides by 26=3⋅2=2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Multiply each factor the greatest number of times it occurs in either 6 or 4=2⋅2⋅3
Multiply the numbers: 2⋅2⋅3=12=12
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 12
For 6π​:multiply the denominator and numerator by 26π​=6⋅2π2​=12π2​
For 43π​:multiply the denominator and numerator by 343π​=4⋅33π3​=129π​
=−12π2​+129π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=12−π2+9π​
Add similar elements: −2π+9π=7π=2πn+127π​
2x=2πn+127π​
2x=2πn+127π​
2x=2πn+127π​
Divide both sides by 2
2x=2πn+127π​
Divide both sides by 222x​=22πn​+2127π​​
Simplify
22x​=22πn​+2127π​​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 22πn​+2127π​​:πn+247π​
22πn​+2127π​​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
2127π​​=247π​
2127π​​
Apply the fraction rule: acb​​=c⋅ab​=12⋅27π​
Multiply the numbers: 12⋅2=24=247π​
=πn+247π​
x=πn+247π​
x=πn+247π​
x=πn+247π​
Solve 2x+6π​=−arccos(−21​​)+2πn:x=πn−2411π​
2x+6π​=−arccos(−21​​)+2πn
Simplify −arccos(−21​​)+2πn:−43π​+2πn
−arccos(−21​​)+2πn
Use the following trivial identity:arccos(−21​​)=43π​x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=−43π​+2πn
2x+6π​=−43π​+2πn
Move 6π​to the right side
2x+6π​=−43π​+2πn
Subtract 6π​ from both sides2x+6π​−6π​=−43π​+2πn−6π​
Simplify
2x+6π​−6π​=−43π​+2πn−6π​
Simplify 2x+6π​−6π​:2x
2x+6π​−6π​
Add similar elements: 6π​−6π​=0
=2x
Simplify −43π​+2πn−6π​:2πn−1211π​
−43π​+2πn−6π​
Group like terms=2πn−6π​−43π​
Least Common Multiplier of 6,4:12
6,4
Least Common Multiplier (LCM)
Prime factorization of 6:2⋅3
6
6divides by 26=3⋅2=2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Multiply each factor the greatest number of times it occurs in either 6 or 4=2⋅2⋅3
Multiply the numbers: 2⋅2⋅3=12=12
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 12
For 6π​:multiply the denominator and numerator by 26π​=6⋅2π2​=12π2​
For 43π​:multiply the denominator and numerator by 343π​=4⋅33π3​=129π​
=−12π2​−129π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=12−π2−9π​
Add similar elements: −2π−9π=−11π=12−11π​
Apply the fraction rule: b−a​=−ba​=2πn−1211π​
2x=2πn−1211π​
2x=2πn−1211π​
2x=2πn−1211π​
Divide both sides by 2
2x=2πn−1211π​
Divide both sides by 222x​=22πn​−21211π​​
Simplify
22x​=22πn​−21211π​​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 22πn​−21211π​​:πn−2411π​
22πn​−21211π​​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
21211π​​=2411π​
21211π​​
Apply the fraction rule: acb​​=c⋅ab​=12⋅211π​
Multiply the numbers: 12⋅2=24=2411π​
=πn−2411π​
x=πn−2411π​
x=πn−2411π​
x=πn−2411π​
x=πn+247π​,x=πn−2411π​
Combine all the solutionsx=πn+24π​,x=π+πn−245π​,x=πn+247π​,x=πn−2411π​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos(5x)=1,0<= x<= 2pisec(2θ)=2,0<θ< pi/22cos(2θ)+1=0sec((5θ)/4)=2sin^2(x)=1-cos(x)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024