Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan^5(x)-9tan(x)=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan5(x)−9tan(x)=0

Solution

x=πn,x=32π​+πn,x=3π​+πn
+1
Degrees
x=0∘+180∘n,x=120∘+180∘n,x=60∘+180∘n
Solution steps
tan5(x)−9tan(x)=0
Solve by substitution
tan5(x)−9tan(x)=0
Let: tan(x)=uu5−9u=0
u5−9u=0:u=0,u=3​i,u=−3​i,u=−3​,u=3​
u5−9u=0
Factor u5−9u:u(u2+3)(u+3​)(u−3​)
u5−9u
Factor out common term u:u(u4−9)
u5−9u
Apply exponent rule: ab+c=abacu5=u4u=u4u−9u
Factor out common term u=u(u4−9)
=u(u4−9)
Factor u4−9:(u2+3)(u+3​)(u−3​)
u4−9
Rewrite u4−9 as (u2)2−32
u4−9
Rewrite 9 as 32=u4−32
Apply exponent rule: abc=(ab)cu4=(u2)2=(u2)2−32
=(u2)2−32
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(u2)2−32=(u2+3)(u2−3)=(u2+3)(u2−3)
Factor u2−3:(u+3​)(u−3​)
u2−3
Apply radical rule: a=(a​)23=(3​)2=u2−(3​)2
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)u2−(3​)2=(u+3​)(u−3​)=(u+3​)(u−3​)
=(u2+3)(u+3​)(u−3​)
=u(u2+3)(u+3​)(u−3​)
u(u2+3)(u+3​)(u−3​)=0
Using the Zero Factor Principle: If ab=0then a=0or b=0u=0oru2+3=0oru+3​=0oru−3​=0
Solve u2+3=0:u=3​i,u=−3​i
u2+3=0
Move 3to the right side
u2+3=0
Subtract 3 from both sidesu2+3−3=0−3
Simplifyu2=−3
u2=−3
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=−3​,u=−−3​
Simplify −3​:3​i
−3​
Apply radical rule: −a​=−1​a​−3​=−1​3​=−1​3​
Apply imaginary number rule: −1​=i=3​i
Simplify −−3​:−3​i
−−3​
Simplify −3​:3​i
−3​
Apply radical rule: −a​=−1​a​−3​=−1​3​=−1​3​
Apply imaginary number rule: −1​=i=3​i
=−3​i
u=3​i,u=−3​i
Solve u+3​=0:u=−3​
u+3​=0
Move 3​to the right side
u+3​=0
Subtract 3​ from both sidesu+3​−3​=0−3​
Simplifyu=−3​
u=−3​
Solve u−3​=0:u=3​
u−3​=0
Move 3​to the right side
u−3​=0
Add 3​ to both sidesu−3​+3​=0+3​
Simplifyu=3​
u=3​
The solutions areu=0,u=3​i,u=−3​i,u=−3​,u=3​
Substitute back u=tan(x)tan(x)=0,tan(x)=3​i,tan(x)=−3​i,tan(x)=−3​,tan(x)=3​
tan(x)=0,tan(x)=3​i,tan(x)=−3​i,tan(x)=−3​,tan(x)=3​
tan(x)=0:x=πn
tan(x)=0
General solutions for tan(x)=0
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
x=0+πn
x=0+πn
Solve x=0+πn:x=πn
x=0+πn
0+πn=πnx=πn
x=πn
tan(x)=3​i:No Solution
tan(x)=3​i
NoSolution
tan(x)=−3​i:No Solution
tan(x)=−3​i
NoSolution
tan(x)=−3​:x=32π​+πn
tan(x)=−3​
General solutions for tan(x)=−3​
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
x=32π​+πn
x=32π​+πn
tan(x)=3​:x=3π​+πn
tan(x)=3​
General solutions for tan(x)=3​
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
x=3π​+πn
x=3π​+πn
Combine all the solutionsx=πn,x=32π​+πn,x=3π​+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

1-cos(θ)= 1/2(tan(θ)-1)(cos(θ)+1)=0sin^2(θ)=cos^2(θ)solvefor x,sin(x)=0cos(θ)= 2/5

Frequently Asked Questions (FAQ)

  • What is the general solution for tan^5(x)-9tan(x)=0 ?

    The general solution for tan^5(x)-9tan(x)=0 is x=pin,x=(2pi)/3+pin,x= pi/3+pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024