Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sinh(3x)-3sinh(x)=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sinh(3x)−3sinh(x)=0

Solution

x=0
+1
Degrees
x=0∘
Solution steps
sinh(3x)−3sinh(x)=0
Rewrite using trig identities
sinh(3x)−3sinh(x)=0
Use the Hyperbolic identity: sinh(x)=2ex−e−x​2e3x−e−3x​−3⋅2ex−e−x​=0
2e3x−e−3x​−3⋅2ex−e−x​=0
2e3x−e−3x​−3⋅2ex−e−x​=0:x=0
2e3x−e−3x​−3⋅2ex−e−x​=0
Multiply both sides by 22e3x−e−3x​⋅2−3⋅2ex−e−x​⋅2=0⋅2
Simplifye3x−e−3x−3(ex−e−x)=0
Apply exponent rules
e3x−e−3x−3(ex−e−x)=0
Apply exponent rule: abc=(ab)ce3x=(ex)3,e−3x=(ex)−3,e−x=(ex)−1(ex)3−(ex)−3−3(ex−(ex)−1)=0
(ex)3−(ex)−3−3(ex−(ex)−1)=0
Rewrite the equation with ex=u(u)3−(u)−3−3(u−(u)−1)=0
Solve u3−u−3−3(u−u−1)=0:u=1,u=−1
u3−u−3−3(u−u−1)=0
Refineu3−u31​−3(u−u1​)=0
Multiply both sides by u3
u3−u31​−3(u−u1​)=0
Multiply both sides by u3u3u3−u31​u3−3(u−u1​)u3=0⋅u3
Simplify
u3u3−u31​u3−3(u−u1​)u3=0⋅u3
Simplify u3u3:u6
u3u3
Apply exponent rule: ab⋅ac=ab+cu3u3=u3+3=u3+3
Add the numbers: 3+3=6=u6
Simplify −u31​u3:−1
−u31​u3
Multiply fractions: a⋅cb​=ca⋅b​=−u31⋅u3​
Cancel the common factor: u3=−1
Simplify 0⋅u3:0
0⋅u3
Apply rule 0⋅a=0=0
u6−1−3(u−u1​)u3=0
u6−1−3(u−u1​)u3=0
u6−1−3(u−u1​)u3=0
Expand u6−1−3(u−u1​)u3:u6−1−3u4+3u2
u6−1−3(u−u1​)u3
=u6−1−3u3(u−u1​)
Expand −3u3(u−u1​):−3u4+3u2
−3u3(u−u1​)
Apply the distributive law: a(b−c)=ab−aca=−3u3,b=u,c=u1​=−3u3u−(−3u3)u1​
Apply minus-plus rules−(−a)=a=−3u3u+3⋅u1​u3
Simplify −3u3u+3⋅u1​u3:−3u4+3u2
−3u3u+3⋅u1​u3
3u3u=3u4
3u3u
Apply exponent rule: ab⋅ac=ab+cu3u=u3+1=3u3+1
Add the numbers: 3+1=4=3u4
3⋅u1​u3=3u2
3⋅u1​u3
Multiply fractions: a⋅cb​=ca⋅b​=u1⋅3u3​
Multiply the numbers: 1⋅3=3=u3u3​
Cancel the common factor: u=3u2
=−3u4+3u2
=−3u4+3u2
=u6−1−3u4+3u2
u6−1−3u4+3u2=0
Solve u6−1−3u4+3u2=0:u=1,u=−1
u6−1−3u4+3u2=0
Write in the standard form an​xn+…+a1​x+a0​=0u6−3u4+3u2−1=0
Rewrite the equation with v=u2,v2=u4 and v3=u6v3−3v2+3v−1=0
Solve v3−3v2+3v−1=0:v=1
v3−3v2+3v−1=0
Factor v3−3v2+3v−1:(v−1)3
v3−3v2+3v−1
Apply cube of difference rule: a3−3a2b+3ab2−b3=(a−b)3a=v,b=1=(v−1)3
(v−1)3=0
Using the Zero Factor Principle: If ab=0then a=0or b=0v−1=0
Solve v−1=0:v=1
v−1=0
Move 1to the right side
v−1=0
Add 1 to both sidesv−1+1=0+1
Simplifyv=1
v=1
The solution isv=1
v=1
Substitute back v=u2,solve for u
Solve u2=1:u=1,u=−1
u2=1
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=1​,u=−1​
1​=1
1​
Apply radical rule: 1​=1=1
−1​=−1
−1​
Apply radical rule: 1​=11​=1=−1
u=1,u=−1
The solutions are
u=1,u=−1
u=1,u=−1
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of u3−u−3−3(u−u−1) and compare to zero
Solve u3=0:u=0
u3=0
Apply rule xn=0⇒x=0
u=0
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=1,u=−1
u=1,u=−1
Substitute back u=ex,solve for x
Solve ex=1:x=0
ex=1
Apply exponent rules
ex=1
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln(1)
Apply log rule: ln(ea)=aln(ex)=xx=ln(1)
Simplify ln(1):0
ln(1)
Apply log rule: loga​(1)=0=0
x=0
x=0
Solve ex=−1:No Solution for x∈R
ex=−1
af(x) cannot be zero or negative for x∈RNoSolutionforx∈R
x=0
x=0

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos(4x)=sin(2x)csc(θ)=sqrt(2)-sin(x)-cos(x)=0sec(x)sin(x)-2sin(x)=04cos^2(x)=3

Frequently Asked Questions (FAQ)

  • What is the general solution for sinh(3x)-3sinh(x)=0 ?

    The general solution for sinh(3x)-3sinh(x)=0 is x=0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024