Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

4sin^2(θ)=3cos^2(θ),0<θ<360

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

4sin2(θ)=3cos2(θ),0∘<θ<360∘

Solution

θ=−0.71372…+180∘,θ=−0.71372…+360∘,θ=0.71372…,θ=0.71372…+180∘
+1
Radians
θ=−0.71372…+π,θ=−0.71372…+2π,θ=0.71372…,θ=0.71372…+π
Solution steps
4sin2(θ)=3cos2(θ),0∘<θ<360∘
Subtract 3cos2(θ) from both sides4sin2(θ)−3cos2(θ)=0
Factor 4sin2(θ)−3cos2(θ):(2sin(θ)+3​cos(θ))(2sin(θ)−3​cos(θ))
4sin2(θ)−3cos2(θ)
Rewrite 4sin2(θ)−3cos2(θ) as (2sin(θ))2−(3​cos(θ))2
4sin2(θ)−3cos2(θ)
Rewrite 4 as 22=22sin2(θ)−3cos2(θ)
Apply radical rule: a=(a​)23=(3​)2=22sin2(θ)−(3​)2cos2(θ)
Apply exponent rule: ambm=(ab)m22sin2(θ)=(2sin(θ))2=(2sin(θ))2−(3​)2cos2(θ)
Apply exponent rule: ambm=(ab)m(3​)2cos2(θ)=(3​cos(θ))2=(2sin(θ))2−(3​cos(θ))2
=(2sin(θ))2−(3​cos(θ))2
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(2sin(θ))2−(3​cos(θ))2=(2sin(θ)+3​cos(θ))(2sin(θ)−3​cos(θ))=(2sin(θ)+3​cos(θ))(2sin(θ)−3​cos(θ))
(2sin(θ)+3​cos(θ))(2sin(θ)−3​cos(θ))=0
Solving each part separately2sin(θ)+3​cos(θ)=0or2sin(θ)−3​cos(θ)=0
2sin(θ)+3​cos(θ)=0,0<θ<360∘:θ=−arctan(23​​)+180∘,θ=−arctan(23​​)+360∘
2sin(θ)+3​cos(θ)=0,0<θ<360∘
Rewrite using trig identities
2sin(θ)+3​cos(θ)=0
Divide both sides by cos(θ),cos(θ)=0cos(θ)2sin(θ)+3​cos(θ)​=cos(θ)0​
Simplifycos(θ)2sin(θ)​+3​=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)2tan(θ)+3​=0
2tan(θ)+3​=0
Move 3​to the right side
2tan(θ)+3​=0
Subtract 3​ from both sides2tan(θ)+3​−3​=0−3​
Simplify2tan(θ)=−3​
2tan(θ)=−3​
Divide both sides by 2
2tan(θ)=−3​
Divide both sides by 222tan(θ)​=2−3​​
Simplifytan(θ)=−23​​
tan(θ)=−23​​
Apply trig inverse properties
tan(θ)=−23​​
General solutions for tan(θ)=−23​​tan(x)=−a⇒x=arctan(−a)+180∘nθ=arctan(−23​​)+180∘n
θ=arctan(−23​​)+180∘n
Solutions for the range 0<θ<360∘θ=−arctan(23​​)+180∘,θ=−arctan(23​​)+360∘
2sin(θ)−3​cos(θ)=0,0<θ<360∘:θ=arctan(23​​),θ=arctan(23​​)+180∘
2sin(θ)−3​cos(θ)=0,0<θ<360∘
Rewrite using trig identities
2sin(θ)−3​cos(θ)=0
Divide both sides by cos(θ),cos(θ)=0cos(θ)2sin(θ)−3​cos(θ)​=cos(θ)0​
Simplifycos(θ)2sin(θ)​−3​=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)2tan(θ)−3​=0
2tan(θ)−3​=0
Move 3​to the right side
2tan(θ)−3​=0
Add 3​ to both sides2tan(θ)−3​+3​=0+3​
Simplify2tan(θ)=3​
2tan(θ)=3​
Divide both sides by 2
2tan(θ)=3​
Divide both sides by 222tan(θ)​=23​​
Simplifytan(θ)=23​​
tan(θ)=23​​
Apply trig inverse properties
tan(θ)=23​​
General solutions for tan(θ)=23​​tan(x)=a⇒x=arctan(a)+180∘nθ=arctan(23​​)+180∘n
θ=arctan(23​​)+180∘n
Solutions for the range 0<θ<360∘θ=arctan(23​​),θ=arctan(23​​)+180∘
Combine all the solutionsθ=−arctan(23​​)+180∘,θ=−arctan(23​​)+360∘,θ=arctan(23​​),θ=arctan(23​​)+180∘
Show solutions in decimal formθ=−0.71372…+180∘,θ=−0.71372…+360∘,θ=0.71372…,θ=0.71372…+180∘

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

2sin(x)-sqrt(2)=0tan(θ)= 1/2sin^2(x)+cos(x)+1=02cos(2x)=0sin^2(x)-sin(x)=0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024