Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sqrt((9.8(10))/(2pi)tanh(2pi 8/10))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2π9.8(10)​tanh(2π108​)​

Solution

πe516π​+π7π​e516π​−1​e516π​+1​​
+1
Decimal
3.94915…
Solution steps
2π9.8(10)​tanh(2π108​)​
=2π549​⋅10​tanh(2π108​)​
Simplify:2π108​=58π​
2π108​
Multiply fractions: a⋅cb​=ca⋅b​=108⋅2π​
Multiply the numbers: 8⋅2=16=1016π​
Cancel the common factor: 2=58π​
2π549​⋅10​tanh(58π​)​=π7π​tanh(58π​)​​
2π549​⋅10​tanh(58π​)​
Multiply 2π549​⋅10​tanh(58π​):π49tanh(58π​)​
2π549​⋅10​tanh(58π​)
Multiply fractions: a⋅cb​=ca⋅b​=2π549​⋅10tanh(58π​)​
Multiply 549​⋅10tanh(58π​):98tanh(58π​)
549​⋅10tanh(58π​)
Multiply fractions: a⋅cb​=ca⋅b​=549⋅10tanh(58π​)​
Multiply the numbers: 49⋅10=490=5490tanh(58π​)​
Divide the numbers: 5490​=98=98tanh(58π​)
=2π98tanh(58π​)​
Divide the numbers: 298​=49=π49tanh(58π​)​
=π49tanh(58π​)​​
Apply radical rule: assuming a≥0,b≥0=π​49tanh(58π​)​​
Apply radical rule: assuming a≥0,b≥049tanh(58π​)​=49​tanh(58π​)​=π​49​tanh(58π​)​​
49​=7
49​
Factor the number: 49=72=72​
Apply radical rule: 72​=7=7
=π​7tanh(58π​)​​
Rationalize π​7tanh(58π​)​​:π7π​tanh(58π​)​​
π​7tanh(58π​)​​
Multiply by the conjugate π​π​​=π​π​7tanh(58π​)​π​​
π​π​=π
π​π​
Apply radical rule: a​a​=aπ​π​=π=π
=π7π​tanh(58π​)​​
=π7π​tanh(58π​)​​
=π7π​tanh(58π​)​​
Rewrite using trig identities:tanh(58π​)=e516π​+1e516π​−1​
tanh(58π​)
Use the Hyperbolic identity: tanh(x)=ex+e−xex−e−x​=e58π​+e−58π​e58π​−e−58π​​
e58π​+e−58π​e58π​−e−58π​​=e516π​+1e516π​−1​
e58π​+e−58π​e58π​−e−58π​​
Apply exponent rule: a−b=ab1​e−58π​=e58π​1​=e58π​+e58π​1​e58π​−e58π​1​​
Join e58π​+e58π​1​:e58π​e516π​+1​
e58π​+e58π​1​
Convert element to fraction: e58π​=e58π​e58π​e58π​​=e58π​e58π​e58π​​+e58π​1​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=e58π​e58π​e58π​+1​
e58π​e58π​+1=e2⋅58π​+1
e58π​e58π​+1
e58π​e58π​=e2⋅58π​
e58π​e58π​
Apply exponent rule: ab⋅ac=ab+ce58π​e58π​=e58π​+58π​=e58π​+58π​
Add similar elements: 58π​+58π​=2⋅58π​=e2⋅58π​
=e2⋅58π​+1
=e58π​e2⋅58π​+1​
Multiply 2⋅58π​:516π​
2⋅58π​
Multiply fractions: a⋅cb​=ca⋅b​=58π2​
Multiply the numbers: 8⋅2=16=516π​
=e58π​e516π​+1​
=e58π​e516π​+1​e58π​−e58π​1​​
Join e58π​−e58π​1​:e58π​e516π​−1​
e58π​−e58π​1​
Convert element to fraction: e58π​=e58π​e58π​e58π​​=e58π​e58π​e58π​​−e58π​1​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=e58π​e58π​e58π​−1​
e58π​e58π​−1=e2⋅58π​−1
e58π​e58π​−1
e58π​e58π​=e2⋅58π​
e58π​e58π​
Apply exponent rule: ab⋅ac=ab+ce58π​e58π​=e58π​+58π​=e58π​+58π​
Add similar elements: 58π​+58π​=2⋅58π​=e2⋅58π​
=e2⋅58π​−1
=e58π​e2⋅58π​−1​
Multiply 2⋅58π​:516π​
2⋅58π​
Multiply fractions: a⋅cb​=ca⋅b​=58π2​
Multiply the numbers: 8⋅2=16=516π​
=e58π​e516π​−1​
=e58π​e516π​+1​e58π​e516π​−1​​
Divide fractions: dc​ba​​=b⋅ca⋅d​=e58π​(e516π​+1)(e516π​−1)e58π​​
Cancel the common factor: e58π​=e516π​+1e516π​−1​
=e516π​+1e516π​−1​
=π7π​e516π​+1e516π​−1​​​
π7π​e516π​+1e516π​−1​​​=πe516π​+π7π​e516π​−1​e516π​+1​​
π7π​e516π​+1e516π​−1​​​
e516π​+1e516π​−1​​=e516π​+1​e516π​−1​​
e516π​+1e516π​−1​​
Apply radical rule: assuming a≥0,b≥0=e516π​+1​e516π​−1​​
=π7π​e516π​+1​e516π​−1​​​
Multiply 7π​e516π​+1​e516π​−1​​:e516π​+1​7π​e516π​−1​​
7π​e516π​+1​e516π​−1​​
Multiply fractions: a⋅cb​=ca⋅b​=e516π​+1​e516π​−1​⋅7π​​
=πe516π​+1​7π​e516π​−1​​​
Apply the fraction rule: acb​​=c⋅ab​=e516π​+1​πe516π​−1​⋅7π​​
Rationalize πe516π​+1​7π​e516π​−1​​:πe516π​+π7π​e516π​−1​e516π​+1​​
πe516π​+1​7π​e516π​−1​​
Multiply by the conjugate e516π​+1​e516π​+1​​=e516π​+1​πe516π​+1​e516π​−1​⋅7π​e516π​+1​​
e516π​+1​πe516π​+1​=πe516π​+π
e516π​+1​πe516π​+1​
Apply radical rule: a​a​=ae516π​+1​e516π​+1​=e516π​+1=π(e516π​+1)
Apply the distributive law: a(b+c)=ab+aca=π,b=e516π​,c=1=πe516π​+π1
=πe516π​+1π
Multiply: 1π=π=πe516π​+π
=πe516π​+π7π​e516π​−1​e516π​+1​​
=πe516π​+π7π​e516π​−1​e516π​+1​​
=πe516π​+π7π​e516π​−1​e516π​+1​​

Popular Examples

sec(arctan(5/12))sin(210\circ)(tan(pi))/(12)2(cos(150)+isin(150))(1-cos(315))/(sin(315))
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024