Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Geometry >

6x^2+144y^2=864

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

6x2+144y2=864

Solution

(h,k)=(0,0),a=12,b=6​
Solution steps
6x2+144y2=864
Rewrite 6x2+144y2=864in the form of the standard ellipse equation
122(x−0)2​+(6​)2(y−0)2​=1
Therefore ellipse properties are:(h,k)=(0,0),a=12,b=6​
a>btherefore ais semi-major axis and bis semi-minor axisEllipsewithcenter(h,k)=(0,0),a=12,b=6​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

81x^2+9y^2=64vertices 9x^2+25y^2=225vertices 81x^2-1296x+16y^2+64y=-3952vertices 49x^2+25y^2-196x+250y-404=0vertices ((x-3)^2)/(49)+((y+5)^2)/(25)=1

Frequently Asked Questions (FAQ)

  • What is 6x^2+144y^2=864 ?

    The solution to 6x^2+144y^2=864 is Ellipse with (h,k)=(0,0),a=12,b=sqrt(6)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024