Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Calculus >

Find the Antiderivative arctan(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

integral

Solution

xarctan(x)−21​ln​x2+1​+C
Solution steps
∫arctan(x)dx
Apply Integration By Parts
=xarctan(x)−∫x2+1x​dx
∫x2+1x​dx=21​ln​x2+1​
=xarctan(x)−21​ln​x2+1​
Add a constant to the solution=xarctan(x)−21​ln​x2+1​+C

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

Find the Derivative - d/dx y = log of e^xFind the Antiderivative sec(x)Find the Antiderivative sin(x)^2Find the Derivative - d/dx y = log base 2 of xFind the Derivative - d/dx log of 1/x

Frequently Asked Questions (FAQ)

  • What is the integral of arctan(x) ?

    The integral of arctan(x) is xarctan(x)-1/2 ln|x^2+1|+C
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024