Lösungen
Integrale RechnerAbleitung RechnerAlgebra RechnerMatrix RechnerMehr...
Grafiken
LiniendiagrammExponentieller GraphQuadratischer GraphSinusdiagrammMehr...
Rechner
BMI-RechnerZinseszins-RechnerProzentrechnerBeschleunigungsrechnerMehr...
Geometrie
Satz des Pythagoras-RechnerKreis Fläche RechnerGleichschenkliges Dreieck RechnerDreiecke RechnerMehr...
AI Chat
Werkzeuge
NotizbuchGruppenSpickzettelArbeitsblätterÜbungenÜberprüfe
de
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Beliebt Rechnen >

derivative log_{2}(e^{-x}cos(pix))

  • Voralgebra
  • Algebra
  • Vorkalkül
  • Rechnen
  • Funktionen
  • Lineare Algebra
  • Trigonometrie
  • Statistik
  • Chemie
  • Ökonomie
  • Umrechnungen

Lösung

ableitung von log2​(e−xcos(πx))

Lösung

−ln(2)cos(πx)cos(πx)+πsin(πx)​
Schritte zur Lösung
dxd​(log2​(e−xcos(πx)))
Wende die log Regel an: loga​(b)=ln(a)ln(b)​=dxd​(ln(2)ln(e−xcos(πx))​)
Entferne die Konstante: (a⋅f)′=a⋅f′=ln(2)1​dxd​(ln(e−xcos(πx)))
Wende die Kettenregel an:e−xcos(πx)1​dxd​(e−xcos(πx))
=e−xcos(πx)1​dxd​(e−xcos(πx))
dxd​(e−xcos(πx))=−e−xcos(πx)−πe−xsin(πx)
=ln(2)1​⋅e−xcos(πx)1​(−e−xcos(πx)−πe−xsin(πx))
Vereinfache ln(2)1​⋅e−xcos(πx)1​(−e−xcos(πx)−πe−xsin(πx)):−ln(2)cos(πx)cos(πx)+πsin(πx)​
=−ln(2)cos(πx)cos(πx)+πsin(πx)​

Graph

Sorry, your browser does not support this application
Interaktives Diagramm anzeigen

Beliebte Beispiele

implicit (dy)/(dx),x^3-3x^2y+2xy^2=12implicitdxdy​,x3−3x2y+2xy2=12derivative x^2(1-6x)derivativex2(1−6x)derivative of x^5e^{-3ln(x})dxd​(x5e−3ln(x))integral of sec^2(5xta)n^35x∫sec2(5xta)n35xdxintegral of cos(x)cos(5x)∫cos(x)cos(5x)dx
LernwerkzeugeKI-Mathe-LöserAI ChatArbeitsblätterÜbungenSpickzettelRechnerGrafikrechnerGeometrie-RechnerLösung überprüfen
AppsSymbolab App (Android)Grafikrechner (Android)Übungen (Android)Symbolab App (iOS)Grafikrechner (iOS)Übungen (iOS)Chrome-Erweiterung
UnternehmenÜber SymbolabBlogHilfe
LegalDatenschutzbestimmungenService TermsCookiesCookie-EinstellungenVerkaufen oder teilen Sie meine persönlichen Daten nichtUrheberrecht, Community-Richtlinien, DSA und andere rechtliche RessourcenLearneo Rechtszentrum
Soziale Medien
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024