Solution
Solution
Solution steps
Apply the chain rule:
Simplify
Popular Examples
integral of (2x^3+6x^2+7x+4)/(x^2+3x+2)tangent of y= 1/(sqrt(x)),(1,1)tangent of derivative of (x^2+3x-9e^x)derivative of x^3+ky(x^2-5xy)tangent of (16x)/(x^2+16),\at-2,-8/5tangent of
Frequently Asked Questions (FAQ)
What is the d/(d{x)}(sqrt({x)+{y}+{z}}) ?
The d/(d{x)}(sqrt({x)+{y}+{z}}) is (1+d/(d{x)}({y})+d/(d{x)}({z}))/(2sqrt({x)+{y)+{z}}}What is the first d/(d{x)}(sqrt({x)+{y}+{z}}) ?
The first d/(d{x)}(sqrt({x)+{y}+{z}}) is (1+d/(d{x)}({y})+d/(d{x)}({z}))/(2sqrt({x)+{y)+{z}}}