Read: Solve Polynomial Equations
Learning Objectives
- Use factoring methods to factor polynomial equations
- Use the principle of zero products to solve polynomial equations
The Principle of Zero Products
Principle of Zero Products
The Principle of Zero Products states that if the product of two numbers is [latex]0[/latex], then at least one of the factors is [latex]0[/latex]. If [latex]ab=0[/latex], then either [latex]a=0[/latex] or [latex]b=0[/latex], or both a and b are [latex]0[/latex].Example
Solve: [latex-display]-t^2+t=0[/latex-display]Answer: Each term has a common factor of [latex]t[/latex], so we can factor and use the zero product principle. Rewrite each term as the product of the GCF and the remaining terms. [latex-display]\begin{array}{c}-t^2=t\left(-t\right)\\t=t\left(1\right)\end{array}[/latex-display] Rewrite the polynomial equation using the factored terms in place of the original terms.
[latex]\begin{array}{c}-t^2+t=0\\t\left(-t\right)+t\left(1\right)\\t\left(-t+1\right)=0\end{array}[/latex]
Now we have a product on one side and zero on the other, so we can set each factor equal to zero using the zero product principle.
[latex]\begin{array}{c}t=0\,\,\,\,\,\,\,\,\text{ OR }\,\,\,\,\,\,\,\,\,\,\,-t+1=0\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\underline{-1}\,\,\,\underline{-1}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,-t=-1\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\frac{-t}{-1}=\frac{-1}{-1}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,t=1\end{array}[/latex]
Answer
[latex-display]t=0\text{ OR }t=1[/latex-display]Example
Solve: [latex]s^2-4s=5[/latex]Answer: First, move all the terms to one side. The goal is to try and see if we can use the zero product principle, since that is the only tool we know for solving polynomial equations.
[latex]\begin{array}{c}\,\,\,\,\,\,\,s^2-4s=5\\\,\,\,\,\,\,\,s^2-4s-5=0\\\end{array}[/latex]
We now have all the terms on the left side, and zero on the other side. The polynomial[latex]s^2-4s-5[/latex] factors nicely, which makes this equation a good candidate for the zero product principle. (imagine that)
[latex]\begin{array}{c}s^2-4s-5=0\\\left(s+1\right)\left(s-5\right)=0\end{array}[/latex]
We separate our factors into two linear equations using the principle of zero products.
[latex-display]\begin{array}{c}\left(s-5\right)=0\\s-5=0\\\,\,\,\,\,\,\,\,\,s=5\end{array}[/latex-display] OR [latex-display]\begin{array}{c}\left(s+1\right)=0\\s+1=0\\s=-1\end{array}[/latex-display]Answer
[latex-display]s=-1\text{ OR }s=5[/latex-display]Example
Solve [latex]y^2-5=-\frac{7}{2}y+\frac{5}{2}[/latex]Answer: We can solve this in one of two ways. One way is to eliminate the fractions like you may have done when solving linear equations, and the second is to find a common denominator and factor fractions. Eliminating fractions is easier, so we will show that way. Start by multiplying the whole equation by [latex]2[/latex] to eliminate fractions: [latex-display]\begin{array}{ccc}2\left(y^2-5=-\frac{7}{2}y+\frac{5}{2}\right)\\\,\,\,\,\,\,2(y^2)+2(-5)=2\left(-\frac{7}{2}\right)+2\left(-\frac{5}{2}\right)\\2y^2-10=-7y+5\end{array}[/latex-display] Now we can move all the terms to one side and see if this will factor so we can use the principle of zero products. [latex-display]\begin{array}{c}2y^2-10=-7y-5\\2y^2-10+7y-5=0\\2y^2-15+7y=0\\2y^2+7y-15=0\end{array}[/latex-display] We can now check whether this polynomial will factor, using a table we can list factors until we find two numbers with a product of [latex]2\cdot-15=-30[/latex] and a sum of 7.
Factors of [latex]2\cdot-15=-30[/latex] | Sum of Factors |
---|---|
[latex]1,-30[/latex] | [latex]-29[/latex] |
[latex]-1,30[/latex] | [latex]29[/latex] |
[latex]2,-15[/latex] | [latex]-13[/latex] |
[latex]-2,15[/latex] | [latex]13[/latex] |
[latex]3,-10[/latex] | [latex]-7[/latex] |
[latex]-3,10[/latex] | [latex]7[/latex] |
Answer
[latex]y=\frac{3}{2}\text{ OR }y=-5[/latex]
Licenses & Attributions
CC licensed content, Original
- Solve a Quadratic Equations with Fractions by Factoring (a not 1). Authored by: James Sousa (Mathispower4u.com) for Lumen Learning. License: CC BY: Attribution.
- Revision and Adaptation. Provided by: Lumen Learning License: CC BY: Attribution.
CC licensed content, Shared previously
- Ex: Factor and Solve Quadratic Equation - Greatest Common Factor Only. Authored by: James Sousa (Mathispower4u.com) . License: CC BY: Attribution.
- Ex: Factor and Solve Quadratic Equations When A equals 1. Authored by: James Sousa (Mathispower4u.com) . License: CC BY: Attribution.
- Unit 12: Factoring, from Developmental Math: An Open Program. Provided by: Monterey Institute of Technology Located at: https://www.nroc.org/. License: CC BY: Attribution.