Read: Multiple Term Radicals
Learning Objectives
- Multiply multiple term radicals
- Use the distributive property to multiply multiple term radicals
- Use the power of a product rule to simplify products of multiple term radicals
Example
Simplify. [latex] a(3a-5)[/latex]Answer: Use the Distributive Property of Multiplication over Subtraction.
[latex]\begin{array}{c}a(3a)-a(5)\\=3a^2-5a\end{array}[/latex]
Answer
[latex-display] a(3a-5)=3{{a}^{2}}-5a[/latex-display]Example
Simplify. [latex] \sqrt{x}(3\sqrt{x}-5)[/latex]Answer: Use the Distributive Property of Multiplication over Subtraction.
[latex] \sqrt{x}(3\sqrt{x})-\sqrt{x}(5)[/latex]
Apply the rules of multiplying radicals: [latex] \sqrt{a}\cdot \sqrt{b}=\sqrt{ab}[/latex] to multiply [latex] \sqrt{x}(3\sqrt{x})[/latex].[latex] 3\sqrt{{{x}^{2}}}-5\sqrt{x}[/latex]
Be sure to simplify radicals when you can: [latex] \sqrt{{{x}^{2}}}=\left| x \right|[/latex], so [latex] 3\sqrt{{{x}^{2}}}=3\left| x \right|[/latex].Answer
[latex-display] \sqrt{x}(3\sqrt{x}-5)=3\left| x \right|-5\sqrt{x}[/latex-display]Example
Simplify. [latex] 7\sqrt{x}\left( 2\sqrt{xy}+\sqrt{y} \right)[/latex]Answer: Use the Distributive Property of Multiplication over Addition to multiply each term within parentheses by [latex] 7\sqrt{x}[/latex].
[latex] 7\sqrt{x}\left( 2\sqrt{xy} \right)+7\sqrt{x}\left( \sqrt{y} \right)[/latex]
Apply the rules of multiplying radicals.[latex] 7\cdot 2\sqrt{{{x}^{2}}y}+7\sqrt{xy}[/latex]
[latex] \sqrt{{{x}^{2}}}=\left| x \right|[/latex], so [latex] \left| x \right|[/latex] can be pulled out of the radical.[latex] 14|x|\sqrt{y}+7\sqrt{xy}[/latex]
Answer
[latex-display] 7\sqrt{x}\left( 2\sqrt{xy}+\sqrt{y} \right)=14\left| x \right|\sqrt{y}+7\sqrt{xy}[/latex-display]Example
Simplify. [latex] \sqrt[3]{a}\left( 2\sqrt[3]{{{a}^{2}}}-4\sqrt[3]{{{a}^{5}}}+8\sqrt[3]{{{a}^{8}}} \right)[/latex]Answer: Use the Distributive Property.
[latex] \sqrt[3]{a}\left( 2\sqrt[3]{{{a}^{2}}} \right)-\sqrt[3]{a}\left( 4\sqrt[3]{{{a}^{5}}} \right)+\sqrt[3]{a}\left( 8\sqrt[3]{{{a}^{8}}} \right)[/latex]
Apply the rules of multiplying radicals.[latex] \begin{array}{c}2\sqrt[3]{a\cdot {{a}^{2}}}-4\sqrt[3]{a\cdot {{a}^{5}}}+8\sqrt[3]{a\cdot {{a}^{8}}}\\2\sqrt[3]{{{a}^{3}}}-4\sqrt[3]{{{a}^{6}}}+8\sqrt[3]{{{a}^{9}}}\end{array}[/latex]
Identify cubes in each of the radicals.[latex] 2\sqrt[3]{{{a}^{3}}}-4\sqrt[3]{{{\left( {{a}^{2}} \right)}^{3}}}+8\sqrt[3]{{{\left( {{a}^{3}} \right)}^{3}}}[/latex]
Answer
[latex-display] \sqrt[3]{a}\left( 2\sqrt[3]{{{a}^{2}}}-4\sqrt[3]{{{a}^{5}}}+8\sqrt[3]{{{a}^{8}}} \right)=2a-4{{a}^{2}}+8{{a}^{3}}[/latex-display]Multiply Binomial Expressions That Contain Radicals
You can use the same technique for multiplying binomials to multiply binomial expressions with radicals. As a refresher, here is the process for multiplying two binomials. If you like using the expression “FOIL” (First, Outside, Inside, Last) to help you figure out the order in which the terms should be multiplied, you can use it here, too.Example
Multiply. [latex] \left( 2x+5 \right)\left( 3x-2 \right)[/latex]Answer: Use the Distributive Property.
[latex]\begin{array}{l}\text{First}:\,\,\,\,\,\,\,\,\,\,\,2x\cdot 3x=6{{x}^{2}}\\\text{Outside}:\,\,\,2x\cdot \left( -2 \right)=-4x\\\text{Inside}:\,\,\,\,\,\,\,\,5\cdot 3x=15x\\\text{Last}:\,\,\,\,\,\,\,\,\,\,\,\,5\cdot \left( -2 \right)=-10\end{array}[/latex]
Record the terms, and then combine like terms.[latex] 6{{x}^{2}}-4x+15x-10[/latex]
Answer
[latex-display] \left( 2x+5 \right)\left( 3x-2 \right)=6{{x}^{2}}+11x-10[/latex-display]Example
Multiply. [latex] \left( 2\sqrt{b}+5 \right)\left( 3\sqrt{b}-2 \right),\,\,b\ge 0[/latex]Answer: Use the Distributive Property to multiply. Simplify using [latex] \sqrt{x}\cdot \sqrt{x}=x[/latex].
[latex]\begin{array}{l}\text{First}:\,\,\,\,\,\,\,\,\,\,\,2\sqrt{b}\cdot 3\sqrt{b}=2\cdot 3\cdot \sqrt{b}\cdot \sqrt{b}=6b\\\text{Outside}:\,\,\,2\sqrt{b}\cdot \left( -2 \right)=-4\sqrt{b}\\\text{Inside}:\,\,\,\,\,\,\,\,5\cdot 3\sqrt{b}=15\sqrt{b}\\\text{Last}:\,\,\,\,\,\,\,\,\,\,\,\,5\cdot \left( -2 \right)=-10\end{array}[/latex]
Record the terms, and then combine like terms.[latex] 6b-4\sqrt{b}+15\sqrt{b}-10[/latex]
Answer
[latex-display] \left( 2\sqrt{b}+5 \right)\left( 3\sqrt{b}-2 \right)=6b+11\sqrt{b}-10[/latex-display]Multiplying Two-Term Radical Expressions
To multiply radical expressions, use the same method as used to multiply polynomials.- Use the Distributive Property (or, if you prefer, the shortcut FOIL method);
- Remember that [latex] \sqrt{a}\cdot \sqrt{b}=\sqrt{ab}[/latex]; and
- Combine like terms.
Example
Multiply. [latex] \left( 4{{x}^{2}}+\sqrt[3]{x} \right)\left( \sqrt[3]{{{x}^{2}}}+2 \right)[/latex]Answer: Use FOIL to multiply.
[latex]\begin{array}{l}\text{First}:\,\,\,\,\,\,\,\,\,\,\,4x^{2}\cdot\sqrt[3]{x^{2}}=4x^{2}\sqrt[3]{x^{2}}\\\text{Outside}:\,\,\,4x^{2}\cdot 2=8x^{2}\\\text{Inside}:\,\,\,\,\,\,\,\,\sqrt[3]{x}\cdot\sqrt[3]{x^{2}}=\sqrt[3]{x^{2}\cdot x}=\sqrt[3]{x^{3}}=x\\\text{Last}:\,\,\,\,\,\,\,\,\,\,\,\,\sqrt[3]{x}\cdot 2=2\sqrt[3]{x}\end{array}[/latex]
Record the terms, and then combine like terms (if possible). Here, there are no like terms to combine.[latex] 4{{x}^{2}}\sqrt[3]{{{x}^{2}}}+8{{x}^{2}}+x+2\sqrt[3]{x}[/latex]
Answer
[latex-display] \left( 4{{x}^{2}}+\sqrt[3]{x} \right)\left( \sqrt[3]{{{x}^{2}}}+2 \right)=4{{x}^{2}}\sqrt[3]{{{x}^{2}}}+8{{x}^{2}}+x+2\sqrt[3]{x}[/latex-display]Summary
To multiply radical expressions that contain more than one term, use the same method that you use to multiply polynomials. First, use the Distributive Property (or, if you prefer, the shortcut FOIL method) to multiply the terms. Then, apply the rules [latex] \sqrt{a}\cdot \sqrt{b}=\sqrt{ab}[/latex], and [latex] \sqrt{x}\cdot \sqrt{x}=x[/latex] to multiply and simplify. Finally, combine like terms.Licenses & Attributions
CC licensed content, Original
- Multiplying Radical Expressions with Variables Using Distribution. Authored by: James Sousa (Mathispower4u.com) for Lumen Learning. License: CC BY: Attribution.
- Multiplying Binomial Radical Expressions with Variables. Authored by: James Sousa (Mathispower4u.com) for Lumen Learning. License: CC BY: Attribution.
- Revision and Adaptation. Provided by: Lumen Learning License: CC BY: Attribution.
CC licensed content, Shared previously
- Precalculus. Provided by: OpenStax Authored by: Abramson, Jay. Located at: https://cnx.org/contents/[email protected]:1/Preface. License: CC BY: Attribution. License terms: Download for free at: http://cnx.org/contents/[email protected]:1/Preface.
- Unit 16: Radical Expressions and Quadratic Equations, from Developmental Math: An Open Program. Provided by: Monterey Institute of Technology Located at: https://www.nroc.org/. License: CC BY: Attribution.