Section Exercises
1. How can an exponential equation be solved? 2. When does an extraneous solution occur? How can an extraneous solution be recognized? 3. When can the one-to-one property of logarithms be used to solve an equation? When can it not be used? For the following exercises, use like bases to solve the exponential equation. 4. [latex]{4}^{-3v - 2}={4}^{-v}\\[/latex] 5. [latex]64\cdot {4}^{3x}=16\\[/latex] 6. [latex]{3}^{2x+1}\cdot {3}^{x}=243\\[/latex] 7. [latex]{2}^{-3n}\cdot \frac{1}{4}={2}^{n+2}\\[/latex] 8. [latex]625\cdot {5}^{3x+3}=125\\[/latex] 9. [latex]\frac{{36}^{3b}}{{36}^{2b}}={216}^{2-b}\\[/latex] 10. [latex]{\left(\frac{1}{64}\right)}^{3n}\cdot 8={2}^{6}\\[/latex] For the following exercises, use logarithms to solve. 11. [latex]{9}^{x - 10}=1\\[/latex] 12. [latex]2{e}^{6x}=13\\[/latex] 13. [latex]{e}^{r+10}-10=-42\\[/latex] 14. [latex]2\cdot {10}^{9a}=29\\[/latex] 15. [latex]-8\cdot {10}^{p+7}-7=-24\\[/latex] 16. [latex]7{e}^{3n - 5}+5=-89\\[/latex] 17. [latex]{e}^{-3k}+6=44\\[/latex] 18. [latex]-5{e}^{9x - 8}-8=-62\\[/latex] 19. [latex]-6{e}^{9x+8}+2=-74\\[/latex] 20. [latex]{2}^{x+1}={5}^{2x - 1}\\[/latex] 21. [latex]{e}^{2x}-{e}^{x}-132=0\\[/latex] 22. [latex]7{e}^{8x+8}-5=-95\\[/latex] 23. [latex]10{e}^{8x+3}+2=8\\[/latex] 24. [latex]4{e}^{3x+3}-7=53\\[/latex] 25. [latex]8{e}^{-5x - 2}-4=-90\\[/latex] 26. [latex]{3}^{2x+1}={7}^{x - 2}\\[/latex] 27. [latex]{e}^{2x}-{e}^{x}-6=0\\[/latex] 28. [latex]3{e}^{3 - 3x}+6=-31\\[/latex] For the following exercises, use the definition of a logarithm to rewrite the equation as an exponential equation. 29. [latex]\mathrm{log}\left(\frac{1}{100}\right)=-2\\[/latex] 30. [latex]{\mathrm{log}}_{324}\left(18\right)=\frac{1}{2}\\[/latex] For the following exercises, use the definition of a logarithm to solve the equation. 31. [latex]5{\mathrm{log}}_{7}n=10\\[/latex] 32. [latex]-8{\mathrm{log}}_{9}x=16\\[/latex] 33. [latex]4+{\mathrm{log}}_{2}\left(9k\right)=2\\[/latex] 34. [latex]2\mathrm{log}\left(8n+4\right)+6=10\\[/latex] 35. [latex]10 - 4\mathrm{ln}\left(9 - 8x\right)=6\\[/latex] For the following exercises, use the one-to-one property of logarithms to solve. 36. [latex]\mathrm{ln}\left(10 - 3x\right)=\mathrm{ln}\left(-4x\right)\\[/latex] 37. [latex]{\mathrm{log}}_{13}\left(5n - 2\right)={\mathrm{log}}_{13}\left(8 - 5n\right)\\[/latex] 38. [latex]\mathrm{log}\left(x+3\right)-\mathrm{log}\left(x\right)=\mathrm{log}\left(74\right)\\[/latex] 39. [latex]\mathrm{ln}\left(-3x\right)=\mathrm{ln}\left({x}^{2}-6x\right)\\[/latex] 40. [latex]{\mathrm{log}}_{4}\left(6-m\right)={\mathrm{log}}_{4}3m\\[/latex] 41. [latex]\mathrm{ln}\left(x - 2\right)-\mathrm{ln}\left(x\right)=\mathrm{ln}\left(54\right)\\[/latex] 42. [latex]{\mathrm{log}}_{9}\left(2{n}^{2}-14n\right)={\mathrm{log}}_{9}\left(-45+{n}^{2}\right)\\[/latex] 43. [latex]\mathrm{ln}\left({x}^{2}-10\right)+\mathrm{ln}\left(9\right)=\mathrm{ln}\left(10\right)\\[/latex] For the following exercises, solve each equation for x. 44. [latex]\mathrm{log}\left(x+12\right)=\mathrm{log}\left(x\right)+\mathrm{log}\left(12\right)\\[/latex] 45. [latex]\mathrm{ln}\left(x\right)+\mathrm{ln}\left(x - 3\right)=\mathrm{ln}\left(7x\right)\\[/latex] 46. [latex]{\mathrm{log}}_{2}\left(7x+6\right)=3\\[/latex] 47. [latex]\mathrm{ln}\left(7\right)+\mathrm{ln}\left(2 - 4{x}^{2}\right)=\mathrm{ln}\left(14\right)\\[/latex] 48. [latex]{\mathrm{log}}_{8}\left(x+6\right)-{\mathrm{log}}_{8}\left(x\right)={\mathrm{log}}_{8}\left(58\right)\\[/latex] 49. [latex]\mathrm{ln}\left(3\right)-\mathrm{ln}\left(3 - 3x\right)=\mathrm{ln}\left(4\right)\\[/latex] 50. [latex]{\mathrm{log}}_{3}\left(3x\right)-{\mathrm{log}}_{3}\left(6\right)={\mathrm{log}}_{3}\left(77\right)\\[/latex] For the following exercises, solve the equation for x, if there is a solution. Then graph both sides of the equation, and observe the point of intersection (if it exists) to verify the solution. 51. [latex]{\mathrm{log}}_{9}\left(x\right)-5=-4\\[/latex] 52. [latex]{\mathrm{log}}_{3}\left(x\right)+3=2\\[/latex] 53. [latex]\mathrm{ln}\left(3x\right)=2\\[/latex] 54. [latex]\mathrm{ln}\left(x - 5\right)=1\\[/latex] 55. [latex]\mathrm{log}\left(4\right)+\mathrm{log}\left(-5x\right)=2\\[/latex] 56. [latex]-7+{\mathrm{log}}_{3}\left(4-x\right)=-6\\[/latex] 57. [latex]\mathrm{ln}\left(4x - 10\right)-6=-5\\[/latex] 58. [latex]\mathrm{log}\left(4 - 2x\right)=\mathrm{log}\left(-4x\right)\\[/latex] 59. [latex]{\mathrm{log}}_{11}\left(-2{x}^{2}-7x\right)={\mathrm{log}}_{11}\left(x - 2\right)\\[/latex] 60. [latex]\mathrm{ln}\left(2x+9\right)=\mathrm{ln}\left(-5x\right)\\[/latex] 61. [latex]{\mathrm{log}}_{9}\left(3-x\right)={\mathrm{log}}_{9}\left(4x - 8\right)\\[/latex] 62. [latex]\mathrm{log}\left({x}^{2}+13\right)=\mathrm{log}\left(7x+3\right)\\[/latex] 63. [latex]\frac{3}{{\mathrm{log}}_{2}\left(10\right)}-\mathrm{log}\left(x - 9\right)=\mathrm{log}\left(44\right)\\[/latex]

Licenses & Attributions
CC licensed content, Shared previously
- Precalculus. Provided by: OpenStax Authored by: Jay Abramson, et al.. Located at: https://openstax.org/books/precalculus/pages/1-introduction-to-functions. License: CC BY: Attribution. License terms: Download For Free at : http://cnx.org/contents/[email protected]..