Section Exercises
1. Explain the difference between the coefficient of a power function and its degree. 2. If a polynomial function is in factored form, what would be a good first step in order to determine the degree of the function? 3. In general, explain the end behavior of a power function with odd degree if the leading coefficient is positive. 4. What is the relationship between the degree of a polynomial function and the maximum number of turning points in its graph? 5. What can we conclude if, in general, the graph of a polynomial function exhibits the following end behavior? As [latex]x\to -\infty ,f\left(x\right)\to -\infty \\[/latex] and as [latex]x\to \infty ,f\left(x\right)\to -\infty \\[/latex]. For the following exercises, identify the function as a power function, a polynomial function, or neither. 6. [latex]f\left(x\right)={x}^{5}\\[/latex] 7. [latex]f\left(x\right)={\left({x}^{2}\right)}^{3}\\[/latex] 8. [latex]f\left(x\right)=x-{x}^{4}\\[/latex] 9. [latex]f\left(x\right)=\frac{{x}^{2}}{{x}^{2}-1}\\[/latex] 10. [latex]f\left(x\right)=2x\left(x+2\right){\left(x - 1\right)}^{2}\\[/latex] 11. [latex]f\left(x\right)={3}^{x+1}\\[/latex] For the following exercises, find the degree and leading coefficient for the given polynomial. 12. [latex]-3x{}^{4}\\[/latex] 13. [latex]7 - 2{x}^{2}\\[/latex] 14. [latex]-2{x}^{2}- 3{x}^{5}+ x - 6 \\[/latex] 15. [latex]x\left(4-{x}^{2}\right)\left(2x+1\right)\\[/latex] 16. [latex]{x}^{2}{\left(2x - 3\right)}^{2}\\[/latex] For the following exercises, determine the end behavior of the functions. 17. [latex]f\left(x\right)={x}^{4}\\[/latex] 18. [latex]f\left(x\right)={x}^{3}\\[/latex] 19. [latex]f\left(x\right)=-{x}^{4}\\[/latex] 20. [latex]f\left(x\right)=-{x}^{9}\\[/latex] 21. [latex]f\left(x\right)=-2{x}^{4}- 3{x}^{2}+ x - 1\\[/latex] 22. [latex]f\left(x\right)=3{x}^{2}+ x - 2\\[/latex] 23. [latex]f\left(x\right)={x}^{2}\left(2{x}^{3}-x+1\right)\\[/latex] 24. [latex]f\left(x\right)={\left(2-x\right)}^{7}\\[/latex] For the following exercises, find the intercepts of the functions. 25. [latex]f\left(t\right)=2\left(t - 1\right)\left(t+2\right)\left(t - 3\right)\\[/latex] 26. [latex]g\left(n\right)=-2\left(3n - 1\right)\left(2n+1\right)\\[/latex] 27. [latex]f\left(x\right)={x}^{4}-16\\[/latex] 28. [latex]f\left(x\right)={x}^{3}+27\\[/latex] 29. [latex]f\left(x\right)=x\left({x}^{2}-2x - 8\right)\\[/latex] 30. [latex]f\left(x\right)=\left(x+3\right)\left(4{x}^{2}-1\right)\\[/latex] For the following exercises, determine the least possible degree of the polynomial function shown. 31.














Licenses & Attributions
CC licensed content, Shared previously
- Precalculus. Provided by: OpenStax Authored by: Jay Abramson, et al.. Located at: https://openstax.org/books/precalculus/pages/1-introduction-to-functions. License: CC BY: Attribution. License terms: Download For Free at : http://cnx.org/contents/[email protected]..