Solutions for Modeling with Trigonometric Equations
Solutions to Try Its
1. The amplitude is [latex]\text{ }3[/latex], and the period is [latex]\text{ }\frac{2}{3}[/latex]. 2.x | [latex]3\sin \left(3x\right)[/latex] |
---|---|
0 | 0 |
[latex]\frac{\pi }{6}[/latex] | 3 |
[latex]\frac{\pi }{3}[/latex] | 0 |
[latex]\frac{\pi }{2}[/latex] | [latex]-3[/latex] |
[latex]\frac{2\pi }{3}[/latex] | 0 |


Solutions to Odd-Numbered Exercises
1. Physical behavior should be periodic, or cyclical. 3. Since cumulative rainfall is always increasing, a sinusoidal function would not be ideal here. 5. [latex]y=-3\cos \left(\frac{\pi }{6}x\right)-1[/latex] 7. [latex]5\sin \left(2x\right)+2[/latex] 9. [latex]4\cos \left(\frac{x\pi }{2}\right)-3[/latex] 11. [latex]5 - 8\sin \left(\frac{x\pi }{2}\right)[/latex] 13. [latex]\tan \left(\frac{x\pi }{12}\right)[/latex] 15. Answers will vary. Sample answer: This function could model temperature changes over the course of one very hot day in Phoenix, Arizona.![Graph of f(x) = -18cos(x*pi/12) - 5sin(x*pi/12) + 100 on the interval [0,24]. There is a single peak around 12.](https://s3-us-west-2.amazonaws.com/courses-images-archive-read-only/wp-content/uploads/sites/923/2015/04/25001621/CNX_Precalc_Figure_07_06_202.jpg)
Licenses & Attributions
CC licensed content, Specific attribution
- Precalculus. Provided by: OpenStax Authored by: OpenStax College. Located at: https://cnx.org/contents/[email protected]:1/Preface. License: CC BY: Attribution.